首页 | 本学科首页   官方微博 | 高级检索  
     检索      

西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义
引用本文:朱弟成,赵志丹,牛耀龄,王青,管琪,刘勇胜,莫宣学.西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义[J].岩石学报,2011,27(7):1917-1930.
作者姓名:朱弟成  赵志丹  牛耀龄  王青  管琪  刘勇胜  莫宣学
作者单位:1. 地质过程与矿产资源国家重点实验室,中国地质大学地球科学与资源学院,北京100083
2. Department of Earth Sciences,Durham University,Durham DH1 3LE
3. Department of Geology, Miami University, Oxford, OH 45056
4. 石家庄经济学院资源学院,石家庄,050031
5. 地质过程与矿产资源国家重点实验室,中国地质大学地球科学学院,武汉430074
基金项目:本文受国家973项目( 2011CB403102、2009CB421002)、国家自然科学面上基金项目( 40973062、40973026)、中央高校基本科研业务费专项资金项目(2010ZD02)、教育部新世纪优秀人才项目(NCET-10-0711)、国家自然科学基金重点基金项目(40830317)和中国地质调查局工作项目(1212011121260、1212011121066)联合资助.
摘    要:富含继承锆石的过铝质花岗岩一般来源于富铝质岩石(如变泥质岩)的部分熔融,因而分析这些继承锆石的U-Pb年龄可以像分析沉积岩碎屑锆石的U-Pb年龄一样,提供过铝质花岗岩源区物质中碎屑沉积物物源区的丰富信息。本文报道了中部拉萨地块早侏罗世过铝质花岗岩的全岩地球化学和锆石U-Pb年代学数据,结合拉萨地块已有二叠纪和晚三叠世过铝质花岗岩的继承锆石年代学数据,总结了目前已有的拉萨地块过铝质花岗岩的继承锆石U-Pb年龄特征(共199个谐和测点)。这些过铝质花岗岩属强过铝质S型花岗岩,其中的继承锆石定义了1250~1100Ma(峰值1181±14Ma)和550~450Ma(峰值494±7Ma)2个最突出的年龄群,分别可比于拉萨地块古生代沉积岩的碎屑锆石年龄峰值(约1170Ma)和寒武纪火山岩的侵位时代,明显不同于西羌塘、安多和特提斯喜马拉雅新元古代-古生代沉积岩中的碎屑锆石年龄频谱。拉萨地块过铝质花岗岩中约1181Ma的继承锆石,可能与拉萨地块古生代沉积岩中的同期碎屑锆石一样,都来自澳大利亚南西部Albany-Fraser造山带和东南极Wilkes等地,而约494的继承锆石,既可能来自澳大利亚西部,也可能来自拉萨地块本地。本文提供了拉萨地块与澳大利亚大陆北缘具有古地理联系的过铝质花岗岩继承锆石U-Pb年龄证据。拉萨地块的研究实践表明,采用过铝质花岗岩继承锆石和古生代沉积岩碎屑锆石相结合的锆石U-Pb年代学方法,可为重建冈瓦纳大陆北缘其它微陆块的古地理和构造岩浆演化提供重要约束。

关 键 词:古地理  拉萨-澳大利亚联系  继承锆石U-Pb年龄  过铝质花岗岩  拉萨地块
收稿时间:2011/4/10 0:00:00
修稿时间:2011/5/25 0:00:00

Tracing the provenance of inherited zircons from peraluminous granites in the Lhasa Terrane and its paleogeographic implications
ZHU DiCheng,ZHAO ZhiDan,NIU YaoLing,WANG Qing,DILEK Yildirim,GUAN Qi and LIU YongSheng.Tracing the provenance of inherited zircons from peraluminous granites in the Lhasa Terrane and its paleogeographic implications[J].Acta Petrologica Sinica,2011,27(7):1917-1930.
Authors:ZHU DiCheng  ZHAO ZhiDan  NIU YaoLing  WANG Qing  DILEK Yildirim  GUAN Qi and LIU YongSheng
Institution:State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;Department of Earth Sciences, Durham University, Durham DH1 3LE, UK;School of Earth Sciences, Lanzhou University, Lanzhou 730000, China;State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;College of Resources, Shijiazhuang University of Economics, Shijiazhuang 050031, China;State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China;State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract:Peraluminous granites with abundant zircon inheritance are derived from partial melting of Al-rich rocks (e.g. metapelite). Thus the U-Pb age data of inherited zircons from peraluminous granites provide insights into provenance of clastic sediments in their source region, as do the detrital zircons from sedimentary rocks (and their metamorphosed equivalents). This paper reports the whole-rock geochemical and zircon U-Pb geochronological data (95 analyses) of the Early Jurassic peraluminous granites in the central Lhasa subterrane. These data, in combination with the existing data of inherited zircons (104 analyses) from the Permian and Late Triassic peraluminous granites currently available in the central Lhasa subterrane, are used to characterize the inherited zircon signature of the Lhasa Terrane. These granites belong to strongly peraluminous S-type granites, which contain abundant inherited zircons that define two main age populations of 1250~1100Ma (peak at 1181±14Ma) and 550~450Ma (peak at 494±7Ma), comparable to the ca. 1170Ma age population defined by detrital zircons from Paleozoic sedimentary rocks and the emplacement timing of Cambrian volcanic rocks in the Lhasa Terrane, respectively. The ca. 1170Ma age population defined by inherited and detrital zircons in the Lhasa Terrane differs significantly from the age distributions (peak at ca. 960Ma) defined by detrital zircons from Neoproterozoic-Paleozoic sedimentary rocks in the western Qiangtang, Amdo, and Tethyan Hiamalaya in southern Tibet. We propose that the ca. 1181Ma inherited zircons from peraluminous granites in the central Lhasa subterrane were most likely derived from the Albany-Fraser orogenic belt in southwestern Australia and Wilkes Province in East Antarctica, as do the coeval detrital zircons from Paleozoic sedimentary rocks in the Lhasa Terrane, and that the ca. 494Ma inherited zircons might have been sourced from both the Western Australia and Lhasa Terrane itself. This paper provides evidence of U-Pb dating on inherited zircons from peraluminous granites for the paleogeographic connection between the Lhasa Terrane and northern Australia. Our studies on the geology of the Lhasa Terrane indicate that a combined in-situ U-Pb dating on inherited zircons from peraluminous granites and detrital zircons from Paleozoic sedimentary rocks can provide important constraints on paleogeography and tectonomagmatic evolution of other microcontinents along the northern margin of Gondwana.
Keywords:Paleogeography  Lhasa-Australian connection  U-Pb ages of inherited zircons  Peraluminous granites  Lhasa Terrane
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩石学报》浏览原始摘要信息
点击此处可从《岩石学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号