首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area,West KunlunSCIEI北大核心CSCD
引用本文:唐俊林,柯强,徐兴旺,康凯,李杭,谭克彬,董连慧,刘洋旭.Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area,West KunlunSCIEI北大核心CSCD[J].岩石学报,2022,38(3):655-675.
作者姓名:唐俊林  柯强  徐兴旺  康凯  李杭  谭克彬  董连慧  刘洋旭
作者单位:中国地质大学地球科学与资源学院, 北京 100083;中国科学院地质与地球物理研究所, 北京 100029;新疆维吾尔自治区地质矿产勘查开发局第六地质大队, 哈密 839000;中国科学院地质与地球物理研究所, 北京 100029;航天工程大学, 北京 101416;中国科学院大学, 北京 100049;中国科学院地质与地球物理研究所, 北京 100029;中国科学院大学, 北京 100049;中国科学院地球科学研究院, 北京 100029
基金项目:本文受中国科学院地质与地球物理研究所重点部署项目(IGGCAS-201902)、第二次青藏高原综合科学考察研究(2019QZKK0802)、新疆维吾尔自治区重大科技专项(2020A03005)和新疆地勘基金项目(K19-3-XJ002)联合资助.
摘    要:西昆仑大红柳滩地区相继发现了众多伟晶岩型锂铍矿床,已成为我国新的锂资源基地。目前关于这些锂铍花岗伟晶岩的成因多强调其源于地壳深熔形成的二云母二长花岗岩的结晶分异,但研究区出露的同时代的黑云母花岗岩与成矿的关系没有被讨论和关注。为了探讨黑云母花岗岩与成矿的关系,作者对龙门山矿区黑云母花岗岩、二云母二长花岗岩、花岗伟晶岩以及与成矿相关的细晶花岗岩开展了详细的地球化学及年代学研究。结果显示:1)黑云母花岗岩与二云母二长花岗岩具相似的地球化学特征,富集Rb、La和Nd,亏损Ba、Nb、Sr、P和Ti元素,均表现出S型花岗岩的特征;2)从黑云母花岗岩→二云母二长花岗岩→细晶花岗岩,表现出连续分异演化的特征;3)黑云母花岗岩的锆石LA-ICP-MS U-Pb年龄为216.8±0.85Ma,二云母二长花岗岩的锆石SIMS U-Pb年龄为216.0±1.5Ma,细晶花岗岩的锆石LA-ICP-MS U-Pb年龄为209.5±1.2Ma,花岗伟晶岩的锡石LA-MC-ICP-MS U-Pb年龄为211.3±5.0Ma,这意味着从黑云母花岗岩到二云母二长花岗岩与细晶花岗岩的形成时间是连续的并且是接近的。基于此...

关 键 词:龙门山  锂铍伟晶岩  黑云母花岗岩  二云母花岗岩  细晶花岗岩  岩浆演化
收稿时间:2021/9/26 0:00:00
修稿时间:2021/11/19 0:00:00

Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun
TANG JunLin,KE Qiang,XU XingWang,KANG Kai,LI Hang,TAN KeBin,DONG LianHui,LIU YangXu.Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun[J].Acta Petrologica Sinica,2022,38(3):655-675.
Authors:TANG JunLin  KE Qiang  XU XingWang  KANG Kai  LI Hang  TAN KeBin  DONG LianHui  LIU YangXu
Institution:School of Earth and Mineral Resources, China University of Geosciences, Beijing 100083, China;Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;No. 6 Geological Party, Xinjiang Bureau of Geology and Mineral Exploration and Development, Hami 839000, China;Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;Space Engineering University, Beijing 101416, China;University of Chinese Academy of Sciences, Beijing 100049, China;Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;University of Chinese Academy of Sciences, Beijing 100049, China;Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Abstract:Several lithium-beryllium deposits of pegmatite type have been found in Dahongliutan area, West Kunlun, which is a new lithium resource base in China. The origin of these deposits was emphasized as crystallization differentiation of the two-mica monzonitic granite formed by anatexis of the crust, but the relationship between the biotite granite in the study area and mineralization has never been discussed and concerned. In order to explore this problem, we conducted geochemistry and chronology studies of biotite granite, two-mica monzonitic granite, granitic pegmatite, and aplitic granite related to mineralization in Longmenshan. The results show:1) The biotite granite and two-mica monzonitic granite have similar geochemical features of S-type granite and are enriched in Rb, La and Nd, depleted in Ba, Nb, Sr, P and Ti; 2) From biotite granite, two-mica monzonitic granite to aplitic granite, the process exhibits a continuous differential evolution of the magma; 3) The zircon LA-ICP-MS U-Pb age of biotite granite is 216.8±0.85Ma, the zircon SIMS U-Pb age of two-mica monzonitic granite is 216.0±1.5Ma, the zircon LA-ICP-MS U-Pb age of aplitic granite is 209.5±1.2Ma, and the cassiterite LA-MC-ICP-MS U-Pb age of granitic pegmatite is 211.3±5.0Ma. This means that the formation time of granite from biotite granite, two-mica monzonitic granite to aplitic granite is continuous and contiguous. Based on this, we believe that the two-mica monzonitic granite and the lithium-beryllium pegmatite in Dahongliutan area are formed by the crystallization differentiation of biotite granite. Experimental petrology showed that biotite dehydration-melting of meta-greywacke or biotite gneiss forms biotite granite, and it is speculated that the extensive biotite granite in Dahongliutan area originated from the dehydration-melting of biotite and some amphibole during granulite facies metamorphism in the lower crust.
Keywords:Longmenshan  Lithium-beryllium pegmatite  Biotite granite  Two-mica monzonitic granite  Aplitic granite  Magma evolution
本文献已被 维普 等数据库收录!
点击此处可从《岩石学报》浏览原始摘要信息
点击此处可从《岩石学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号