首页 | 本学科首页   官方微博 | 高级检索  
     检索      

钕同位素比值~(143)Nd/~(144)Nd标准溶液研制
引用本文:唐索寒,李津,梁细荣,张利国,李国占,濮巍,李潮峰,杨岳衡,储著银,张俊,侯可军,王晓明.钕同位素比值~(143)Nd/~(144)Nd标准溶液研制[J].岩矿测试,2017,36(2):163-170.
作者姓名:唐索寒  李津  梁细荣  张利国  李国占  濮巍  李潮峰  杨岳衡  储著银  张俊  侯可军  王晓明
作者单位:陕西省地质矿产实验研究所, 陕西 西安 710054;陕西省矿产资源勘查与综合利用重点实验室, 陕西 西安 710054,陕西省地质矿产实验研究所, 陕西 西安 710054;陕西省矿产资源勘查与综合利用重点实验室, 陕西 西安 710054,陕西省地质矿产实验研究所, 陕西 西安 710054;陕西省矿产资源勘查与综合利用重点实验室, 陕西 西安 710054,陕西省地质矿产实验研究所, 陕西 西安 710054;陕西省矿产资源勘查与综合利用重点实验室, 陕西 西安 710054,陕西省地质矿产实验研究所, 陕西 西安 710054,陕西省地质矿产实验研究所, 陕西 西安 710054;陕西省矿产资源勘查与综合利用重点实验室, 陕西 西安 710054,陕西省地质矿产实验研究所, 陕西 西安 710054;陕西省矿产资源勘查与综合利用重点实验室, 陕西 西安 710054
基金项目:国土资源公益行业科研专项(201211016-2)
摘    要:钕同位素比值(~(143)Nd/~(144)Nd)是Sm-Nd同位素方法的关键量值,由于被测样品的~(143)Nd/~(144)Nd比值变化范围很小,所以对~(143)Nd/~(144)Nd比值测试的精准度要求很高(精度优于0.005%)。为了获得高精度和高准确度的测试数据,分析过程中所用Nd同位素标准物质起着重要作用。以往的Nd同位素标准物质都是氧化钕,经过近三十年有的已消耗殆尽。本文阐述了钕同位素比值~(143)Nd/~(144)Nd标准溶液的研制,经检验标准溶液的均匀性和稳定性良好,由11家实验室协同定值,采用MC-TIMS和MC-ICP-MS方法测定~(143)Nd/~(144)Nd,确定了Nd同位素标准溶液的特性值~(143)Nd/~(144)Nd=0.512438,不确定度为5×10-6。此标准溶液于2015年5月获得国家标准样品证书(批号为GSB 04-3258—2015),可被用于地质、资源、海洋、环境、考古等多种样品~(143)Nd/~(144)Nd比值测定时的仪器校准和分析过程的质量监控。

关 键 词:锑矿石  单矿物选择性分离  准确度评估  化学物相分析
收稿时间:2015/11/2 0:00:00
修稿时间:2016/8/26 0:00:00

Reference Material Preparation of 143Nd/144Nd Isotope Ratio
TANG Suo-han,LI Jin,LIANG Xi-rong,ZHANG Li-guo,LI Guo-zhan,PU Wei,LI Chao-feng,YANG Yue-heng,CHU Zhu-yin,ZHANG Jun,HOU Ke-jun and WANG Xiao-ming.Reference Material Preparation of 143Nd/144Nd Isotope Ratio[J].Rock and Mineral Analysis,2017,36(2):163-170.
Authors:TANG Suo-han  LI Jin  LIANG Xi-rong  ZHANG Li-guo  LI Guo-zhan  PU Wei  LI Chao-feng  YANG Yue-heng  CHU Zhu-yin  ZHANG Jun  HOU Ke-jun and WANG Xiao-ming
Institution:Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China;Shaanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral Resources, Xi''an 710054, China,Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China;Shaanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral Resources, Xi''an 710054, China,Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China;Shaanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral Resources, Xi''an 710054, China,Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China;Shaanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral Resources, Xi''an 710054, China,Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China,Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China;Shaanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral Resources, Xi''an 710054, China and Shaanxi Institute of Geology and Mineral Resources Experiment, Xi''an 710054, China;Shaanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral Resources, Xi''an 710054, China
Abstract:Currently, a few chemical phase analysis methods possess common application, but most of them are designed for samples in a specific ore district and thus the accuracy of analytical results and the application range of selected analytical process are not certain. Verification of chemical phase analysis by selected analytical process and method accuracy are the primary problem in this field. In this paper, the representative antimony ore type, single antimony sulfide ore is chose as the research object. The main mineral phases of antimony are determined by mineral identification. The needed minerals for the verification of chemical phase analysis are collected. When valentinite mineral cannot be acquired, the proportion of valentinite in mixing oxide ore (mixture of valentinite and antimonate) is determined by valence analysis. Moreover, the selected separation condition among valentinite, stibnite and antimonate is determined by comparison of condition experiment and X-ray diffraction analysis. Results show for the sample with antimony suldide content higher than 35%, the extraction time for the antimony sulfide phase should change from previous 30 minutes to 40 minutes, the leaching rate of stibnite was increased by 4%-6%, the analysis error of antimonates phase can be reduced by 45%-70%. Antimony sulfide was leached completely, and the analysis accuracy of antimonite and cervantite phases was improved. This method is suitable for chemical phase analysis of different types of ores (oxidized and sulfide ores) from different regions.
Keywords:antimony ore minerals  selective separation  accuracy evaluation  chemical phase analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《岩矿测试》浏览原始摘要信息
点击此处可从《岩矿测试》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号