首页 | 本学科首页   官方微博 | 高级检索  
     检索      

太阳能电池协同强化水钠锰矿光电催化染料降解研究
引用本文:任桂平,孙元,孙曼仪,鲁安怀,李艳,丁竑瑞.太阳能电池协同强化水钠锰矿光电催化染料降解研究[J].岩石矿物学杂志,2017,36(6):851-857.
作者姓名:任桂平  孙元  孙曼仪  鲁安怀  李艳  丁竑瑞
作者单位:造山带与地壳演化教育部重点实验室, 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871,造山带与地壳演化教育部重点实验室, 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871,造山带与地壳演化教育部重点实验室, 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871,造山带与地壳演化教育部重点实验室, 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871,造山带与地壳演化教育部重点实验室, 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871,造山带与地壳演化教育部重点实验室, 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871
基金项目:国家重点基础研究发展计划"973"计划(2014CB846001);国家自然科学基金(41230103,41522201,41402032)
摘    要:电催化、光催化、光电催化等电化学技术以其高效、廉价、环保等特点被认为是一种极具前途的环境污染深度净化技术,在有机废水处理等方面得以广泛应用。本文借助电化学电量控制法制备了水钠锰矿电极,通过X射线衍射(XRD)、扫描电镜(SEM)表征其物相形貌,UV-Vis漫反射吸收谱结果表明水钠锰矿对300~600 nm波长范围可见光表现出良好吸收能力,计算其直接带隙约为2.14 e V,Mott-Schottky曲线计算其平带电位约1.15 V,0.1 mol/L Na2SO4介质中载流子浓度约为3.3×1019cm-3,是良好的可见光激发n型半导体材料。同时,本文以廉价高效的太阳能电池板取代了传统电化学工作站等外加电场设备,成功实现了协同强化水钠锰矿光电催化降解作用。协同作用下甲基橙60 min降解率为90.2%,效率远高于水钠锰矿光催化(2.2%)与电极电催化(33.6%)作用,强化了水钠锰矿光电催化降解反应,节省能耗的同时显著提高了降解效率。批次循环降解实验表明第4轮降解率(86.8%)较之第1轮(90.3%)降低程度5%,表明其具有良好长时间运行稳定性。

关 键 词:大阳能电池  水钠锰矿  光电催化  染料降解
收稿时间:2017/8/15 0:00:00
修稿时间:2017/10/25 0:00:00

Solar cell synergistic enhanced photoelectrocatalytic efficiency for birnessite and performance of dye degradation
REN Gui-ping,SUN Yuan,SUN Man-yi,LU An-huai,LI Yan and DING Hong-rui.Solar cell synergistic enhanced photoelectrocatalytic efficiency for birnessite and performance of dye degradation[J].Acta Petrologica Et Mineralogica,2017,36(6):851-857.
Authors:REN Gui-ping  SUN Yuan  SUN Man-yi  LU An-huai  LI Yan and DING Hong-rui
Institution:Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China and Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China
Abstract:Electrochemical technology offers an alternative solution to many environmental problems because electrons provide a versatile, efficient, cost-effective, and clean reagent. The technology includes electrocatalysis, heterogeneous photocatalysis, photoelectrocatalytic (PEC) process and so on. Birnessite electrodes were synthesized by electrochemical method in this paper. Mineral phase and morphology were studied by X-ray Diffraction (XRD) and scanning electron microscope (SEM). UV-Vis absorption spectra demonstrated that the birnessite had a significant absorption of visible light from 300 to 600 nm and a direct band gap of 2.14 eV. Moreover, the flat band potential was 1.15 V and the carrier concentration was 3.3×1019 cm-3 as evaluated by Mott-Schottky. The results demonstrate that birnessite is a great n-type visible light excitation semiconducting material. Meanwhile, a cheaper and more efficient solar cell was used to replace the traditional electrochemical devices such as electrochemical workstation, which realized an enhanced photoelectrocatalytic activity of birnessite. Methyl orange degradation rate was 90.2% at 60 min, which was higher than the sum of degradation rate of birnessitephotocatalysis (2.2%) and electrocatalysis (33.6%). Effective utilization of sunlight was realized and photoelectrocatalytic activity of birnessite was promoted. Moreover, energy was saved and the degradation efficiency was increased. Cyclic degradation showed that decrease degree of the fourth round degradation rate (86.8%) was lower than 5%, compared with the first round (90.3%), and this shows that it has a stability of long term operating. The results obtained by the authors provide a more energy saving, advantageous, and environmentally friendly technique for organic wastewater treatment in the field of environmental mineralogy.
Keywords:solar cell  birnessite  photoelectrocatalysis  dye degradation
本文献已被 CNKI 等数据库收录!
点击此处可从《岩石矿物学杂志》浏览原始摘要信息
点击此处可从《岩石矿物学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号