首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compressive and Tensile Behavior of Polymer Treated Sulfate Contaminated CL Soil
Authors:Ahmed S Mohammed  Cumaraswamy Vipulanandan
Institution:1. Faculty in Civil Engineering, University of Sulaimani, Sulaimani, Iraq
2. Department of Civil and Environmental Engineering, Center for Innovative Grouting Materials and Technology (CIGMAT) and Texas Hurricane Center for Innovative Technology (THC-IT), University of Houston, Houston, TX, 77204, USA
Abstract:In this study, the compressive and tensile behavior of polymer treated sulfate contaminated CL soil was investigated. Based on the information in the literature, a field soil was contaminated with up to 4 % (40,000 ppm) of calcium sulfate in this study. In addition to characterizing the behavior of sulfate contaminated CL soil, the effect of treating the soil with a polymer solution was investigated and the performance was compared to 6 % lime treated soil. In treating the soil, acrylamide polymer solution (15 g of polymer dissolved in 85 g of water) content was varied up to 15 % (by dry soil weight). Addition of 4 % calcium sulfate to the soil decreased the compressive and tensile strengths of the compacted soils by 22 and 33 % respectively with the formation of calcium silicate sulfate ternesite Ca5(SiO4)2SO4)], magnesium silicate sulfate (Mg5(SiO4)2SO4) and calcium-magnesium silicate (merwinite Ca3Mg(SiO4)2). With the polymer treatment the strength properties of sulfate contaminated CL soil was substantially improved. Polymer treated sulfate soils had higher compressive and tensile strengths and enhanced compressive stress–strain relationships compared to the lime treated soils. Also polymer treated soils gained strength more rapidly than lime treated soil. With 10 % of polymer solution treatment, the maximum unconfined compressive and splitting tensile strengths for 4 % of calcium sulfate soil were 625 kPa (91 psi) and 131 kPa (19 psi) respectively in 1 day of curing. Similar improvement in the compressive modulus was observed with polymer treated sulfate contaminated CL soil. The variation of the compacted compressive strength and tensile strength with calcium sulfate concentrations for the treated soils were quantified and the parameters were related to calcium sulfate content in the soil and polymer content. Compressive stress–strain relationships of the sulfate soil, with and without lime and polymer treatment, have been quantified using two nonlinear constitutive models. The constitutive model parameters were sensitive to the calcium sulfate content and the type of treatment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号