首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Liquefaction and cyclic mobility model for saturated granular media
Authors:S Lpez‐Querol  R Blzquez
Institution:S. López‐Querol,R. Blázquez
Abstract:A new constitutive law for the behaviour of undrained sand subjected to dynamic loading is presented. The proposed model works for small and large strain ranges and incorporates contractive and dilative properties of the sand into the unified numerical scheme. These features allow to correctly predict liquefaction and cyclic mobility phenomena for different initial relative densities of the soil. The model has been calibrated as an element test, by using cyclic simple shear data reported in the literature. For the contractive sand behaviour a well‐known endochronic densification model has been used, whereas a plastic model with a new non‐associative flow rule is applied when the sand tends to dilate. Both dilatancy and flow rule are based on a new state parameter, associated to the stiffness degradation of the material as the shaking goes on. Also, the function that represents the rearrangement memory of the soil takes a zero value when the material dilates, in order to easily model the change in the internal structure. Proceeding along this kind of approach, liquefaction and cyclic mobility are modelled with the same constitutive law, within the framework of a bi‐dimensional FEM coupled algorithm developed in the paper. For calibration purposes, the behaviour of the soil in a cyclic simple shear test has been simulated, in order to estimate the influence of permeability, frequency of loading, and homogeneity of the shear stress field on the laboratory data. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:constitutive law  endochronic model  densification  dilatancy  flow rule  liquefaction  cyclic mobility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号