首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness
Authors:Mingjing Jiang  Fang Liu  Yaping Zhou
Institution:1. Department of Geotechnical Engineering, Tongji University, , Shanghai, China;2. State Key Laboratory of Disaster Reduction in Civil Engineering, , Shanghai, China;3. Key Laboratory of Geotechnical and Underground Engineering (Tongji University), Ministry of Education, , Shanghai, China
Abstract:A series of micromechanical tests were conducted to investigate the bond failure criterion of bonded granules considering the effect of bond thickness, with the aim of enhancing the bond contact model used in the distinct element simulations of cemented geomaterials. The granules were idealized in a two‐dimensional context as one pair of aluminum rods bonded by resin epoxy or cement. The mechanical responses of nearly 500 rod pairs were tested under different loading paths to attain the yield loads of bonded granules at variable bond thickness. This study leads to a generic bond failure criterion incorporating the effect of the bond thickness. The results show that the bond compressive resistance largely decreases with increasing bond thickness owing to the presence of the confinement at the bond‐particle interface. The strength envelopes obtained from the combined shear compression tests and combined torsion compression tests have identical functional form, and they decrease in size with increasing bond thickness but remain unchanged in shape. Given the same cementation material, the generic bond strength envelope in a three‐dimensional contact force space under different loading paths remains the same in shape but shrinks with the increase of bond thickness. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:cemented geomaterials  bond contact model  bond thickness  distinct element method  bond failure criterion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号