首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study
Authors:Y Jafarian  A Sadeghi Abdollahi  R Vakili  MH Baziar  A Noorzad
Institution:1. College of Civil Engineering, Semnan University, Semnan 35131-19111, Iran;2. School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran;3. Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal PQ, Canada;4. Power and Water University of Technology, Tehran, Iran
Abstract:Strain energy concept has been employed by the researchers for the assessment of liquefaction phenomenon which is a disastrous type of earthquake-induced failure in saturated soils. The efficiency and predictability conditions of strain energy concept for liquefaction potential assessment are investigated herein using effective stress numerical analyses. Several earthquake ground motions were introduced to the base of a calibrated numerical model using an advanced fully coupled constitutive model. Results of the numerical analyses indicate that earthquake-induced excess pore pressure is more rigorously proportional to strain energy compared with the other examined intensity measures. Subsequently, a simple relationship was derived using the results of dynamic analyses to predict cumulative strain energy density in terms of magnitude, source to site distance, and effective overburden pressure. This relationship, which tries to guarantee the predictability condition of strain energy demand, has demonstrated a successful capability in discrimination between the liquefied and non-liquefied case histories recorded after several well-known earthquakes. This study has provided a practical linkage between numerical analysis and field observations. Finally, it is concluded that although strain energy approach possesses a great conceptual efficiency in liquefaction potential assessment, its precise prediction in actual field conditions involves some difficulties.
Keywords:Earthquake  Strain energy  Liquefaction  Numerical analysis  Efficiency  Predictability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号