首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Implicit integration algorithm for Hoek-Brown elastic-plastic model
Authors:R G Wan
Institution:

Canada Centre for Mineral and Energy Technology Mining Research Laboratories, Ottawa, K1A 0G1, Canada

Abstract:A realistic strength criterion often used to describe the yielding behaviour of a jointed rock mass at a continuum level is the well-known Hoek and Brown criterion. This paper is concerned with a 3-D stress generalization of the Hoek-Brown failure criterion by means of an elliptical functional which leads to a smooth deviatoric trace in the stress space. For its incorporation into a finite element analysis involving plasticity calculations, the formulation of an implicit stress integration algorithm is presented. The key computational methodology alludes to the notion of consistent tangent modulus and implicit return mapping schemes (radial and closest point return) for stress integration in a finite element analysis. Within the context of non-linear elastoplastic analysis, it is found that formulation of such consistent modulus and success into achieving numerical efficiency are closely intertwined. Indeed, the procedure results into accurate and rapid convergence of the displacement finite element scheme during the search for equilibrium. This means that considerable savings in computational time can be achieved for large scale problems. Numerical examples which focus on the Hoek-Brown plasticity model are presented in order to fully appreciate the robustness of the algorithm, and hence the viability of such method to practical problems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号