首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Application of health risk assessment method for geological environment at national and regional scales
Authors:S Rapant  K Faj?íková  M Khun and V Cve?ková
Institution:(1) Geological Survey of the Slovak Republic, Mlynsk? dolina 1, 81704 Bratislava, Slovak Republic;(2) Department of Geochemistry, Faculty of National Sciences, Comenius University, Bratislava, Slovak Republic
Abstract:Health risk, defined as possibility or probability of health damage, illness or death of humans due to exposure to risk factors in the environment, was derived for geological environment (soils) and estimated at national scale for the whole Europe and at more detailed regional scale for Slovak Republic. The assessment was based on data obtained from international geochemical mapping of Europe (Geochemical Atlas of the Europe—827 soil samples) and national geochemical mapping programme of the Slovak Republic (9,860 soil samples). The following chemical elements were evaluated: As, B, Ba, Be, Cd, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn. The health risk assessment method was based on calculations of average daily doses of individual elements analysed in every collected soil sample. Exposure levels were set by using exposure parameters and reference doses from integrated databases of US EPA. The results of calculations were transformed into various sorts of maps (dot, pixel) to delineate areas where increased contents of risk elements can pose risk to human health. The average levels of chronic and carcinogenic risk are presented in the form of tables for single European countries and administrative units of Slovak republic. The results of European mapping (Geochemical Atlas of Europe) indicate that increased levels of potentially toxic elements in soil (mainly As, Pb and Ni) occur primarily in the countries of southern and western Europe. Such elements are associated with increased health risk for resident population. For the countries of northern Europe health risk was estimated at significantly lower level. Relatively high sampling density in Slovak Republic made it possible to calculate health risk at more detailed scale for individual administrative units (municipalities, provinces). The increased health risk level was found in areas well known for high soil contamination (e.g. mining areas).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号