首页 | 本学科首页   官方微博 | 高级检索  
     检索      

山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献
引用本文:唐春雷,郑秀清,梁永平,张发旺,景泽.山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献[J].中国地质,2020,47(6):1755-1764.
作者姓名:唐春雷  郑秀清  梁永平  张发旺  景泽
作者单位:中国地质科学院岩溶地质研究所/自然资源部、广西壮族自治区岩溶动力学重点实验室, 广西 桂林 541004;太原理工大学, 山西 太原 030024;联合国教科文组织国际岩溶研究中心, 广西 桂林 541004;中国地质科学院岩溶地质研究所/自然资源部、广西壮族自治区岩溶动力学重点实验室, 广西 桂林 541004;联合国教科文组织国际岩溶研究中心, 广西 桂林 541004;中国地质调查局水文地质环境地质调查中心, 河北 保定 071051;山西省地质调查院, 山西 太原 030006
基金项目:自然资源部中国地质调查项目(DD20160242,DD20190334),国家自然科学基金项目(41672253,41902256),中国地质科学院基本科研项目(JYYWF20182004,2017023,2020010)联合资助。
摘    要:晋祠泉出露于山西太原西山悬瓮山下,由难老泉、圣母泉、善利泉组成。1954—1958年实测泉水平均流量为l.94 m3/s。与晋祠泉同处山前断裂带的平泉于1978年成为特大岩溶水自流井水源地,自流量最大达到1.56 m3/s。由于这些自流井的开采,使晋祠泉的流量急剧下降,1994年4月30日断流。研究山西太原晋祠泉—平泉水力联系对晋祠泉复流方案制定具有重要意义。本文以晋祠泉、平泉为研究对象,通过样品采集、水质监测,综合运用水化学(离子比例、硫同位素、氢氧同位素)方法。揭示晋祠泉—平泉水文地球化学特征和环境同位素特征,反映地下水流系统的特征、水力联系特征。得出1980—1992年,晋祠泉地下水水位的变化呈稳定下降趋势,主要原因是有太原化学工业公司、开化沟、淸徐县平泉村和梁泉村等水源地大量开采岩溶地下水,导致地下水水位下降。晋祠—平泉一带岩溶地下水氢氧同位素值较接近,说明这一带岩溶地下水补给来源与补给途径相近。水质监测分析得出晋祠泉与平泉各个离子变化趋势基本一致。说明晋祠与平泉存在紧密的水力联系,因此晋祠泉与平泉必然存在一个比较强的导水通道。可以通过在晋祠泉下游导水通道上帷幕灌浆,提高晋祠泉水水位,使晋祠泉出流。

关 键 词:晋祠泉水  水力联系  动态特征  水文地球化学模拟  稳定同位素  地下水地质调查工程  太原  山西
收稿时间:2019/10/12 0:00:00
修稿时间:2020/7/16 0:00:00

The hydraulic connection between Jinci and Pingquan in Taiyuan' Shanxi and its contribution to the reflow of Jinci spring
TANG Chunlei,ZHENG Xiuqing,LIANG Yongping,ZHANG Fawang,JING Ze.The hydraulic connection between Jinci and Pingquan in Taiyuan' Shanxi and its contribution to the reflow of Jinci spring[J].Chinese Geology,2020,47(6):1755-1764.
Authors:TANG Chunlei  ZHENG Xiuqing  LIANG Yongping  ZHANG Fawang  JING Ze
Institution:Institute of Karst Geology, CAGS/Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Guangxi Zhuang Autonomous Region, Guilin 541004, Guangxi, China;Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, Guangxi, China;Institute of Karst Geology, CAGS/Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Guangxi Zhuang Autonomous Region, Guilin 541004, Guangxi, China;International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, Guangxi, China;Center for Hydrogeology and Environmental Geological Survey, CGS, Baoding 071051, Hebei, China; Institute of Geological Survey of Shanxi Province, Taiyuan 030006, Shanxi, China
Abstract:Jinci Spring, which is composed of Nanlao Spring, Shengmu Spring and Shanli Spring, is exposed at the foot of Xishan Mountain in Taiyuan. The average horizontal discharge of Jinci Spring was 1.94 m3/s from 1954 to 1958. Pingquan spring, located in the piedmont fault zone with Jinci spring, became the source of superlarge karst water self-flowing wells in 1978, with the maximum self-flowing rate reaching 1.56 m3/s. Because of the exploitation of these self-flowing wells, the flow of Jinci Spring dropped sharply and was cut off on April 30, 1994. The study of the hydraulic connection between Jinci Spring and Pingquan Spring in Taiyuan, Shanxi Province, is of great significance for the formulation of Jinci Spring recharge plan. With Jinci spring and Pingquan spring as the research objects and through sample collection and water quality monitoring, hydrochemistry (ion ratio, sulfur isotope, hydrogen and oxygen isotope) methods were comprehensively applied. The result has revealed hydrogeochemical characteristics and environmental isotope characteristics of Jinci spring to Pingquan spring as well as the characteristics of groundwater flow system and hydraulic connection. From 1980 to 1992, the change of groundwater level in Jinci Spring showed a steady downward trend. The main reason was that a large number of karst groundwater was exploited in Taiyuan Chemical Industry Company, Kaihua Valley, Pingquan Village and Liangquan Village in Zhaoxu County, which resulted in the decline of groundwater level. The hydrogen and oxygen isotope values of karst groundwater in Jinci spring to Pingquan spring area were close to each other, indicating that the source of recharge and the way of recharge were quite similar. Water quality monitoring analysis shows that the change trend of each ion in Jinci spring and Pingquan spring is basically the same, suggesting that Jinci spring and Pingquan spring have close hydraulic connection, so Jinci spring and Pingquan spring must have a strong water channel. The water level of Jinci spring can be raised by curtain grouting on the downstream water channel of Jinci spring, so that Jinci spring can flow out.
Keywords:Jinci spring  hydraulic connection  dynamic characteristics  hydrogeochemical simulation  stable isotope  hydrogeological survey engineering  Taiyuan  Shanxi
点击此处可从《中国地质》浏览原始摘要信息
点击此处可从《中国地质》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号