首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Recruitment of the Crabs Eurypanopeus depressus, Rhithropanopeus harrisii, and Petrolisthes armatus to Oyster Reefs: the Influence of Freshwater Inflow
Authors:Stephen Gregory Tolley  Bethany Bachelor Brosious  Ernst Bryan Peebles
Institution:1. Coastal Watershed Institute, Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL, 33965, USA
2. Passarella and Associates, Inc, 13620 Metropolis Avenue, Fort Myers, FL, 33912, USA
3. College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, FL, 33701, USA
Abstract:Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号