首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimating observation error covariance matrix of seismic data from a perspective of image denoising
Authors:Xiaodong Luo  Tuhin Bhakta
Institution:1.International Research Institute of Stavanger (IRIS),Bergen,Norway
Abstract:Estimating observation error covariance matrix properly is a key step towards successful seismic history matching. Typically, observation errors of seismic data are spatially correlated; therefore, the observation error covariance matrix is non-diagonal. Estimating such a non-diagonal covariance matrix is the focus of the current study. We decompose the estimation into two steps: (1) estimate observation errors and (2) construct covariance matrix based on the estimated observation errors. Our focus is on step (1), whereas at step (2) we use a procedure similar to that in Aanonsen et al. 2003. In Aanonsen et al. 2003, step (1) is carried out using a local moving average algorithm. By treating seismic data as an image, this algorithm can be interpreted as a discrete convolution between an image and a rectangular window function. Following the perspective of image processing, we consider three types of image denoising methods, namely, local moving average with different window functions (as an extension of the method in Aanonsen et al. 2003), non-local means denoising and wavelet denoising. The performance of these three algorithms is compared using both synthetic and field seismic data. It is found that, in our investigated cases, the wavelet denoising method leads to the best performance in most of the time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号