首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PGE geochemistry of low-Ti high-Mg siliceous mafic rocks within the Archaean Central Indian Bastar Craton: implications for magma fractionation
Authors:Rajesh K Srivastava  Sisir K Mondal  V Balaram  Gulab C Gautam
Institution:1. Igneous Petrology Laboratory, Department of Geology, Banaras Hindu University, Varanasi, 221 005, India
2. Nordic Center for Earth Evolution and Geological Museum, Natural History Museum of Denmark, University of Copenhagen, ?ster Voldgade 5-7, DK-1350, Copenhagen K, Denmark
3. Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West@79th Street, New York, NY, 10024, USA
4. National Geophysical Research Institute, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500 606, India
Abstract:Boninite-norite (BN) suites emplaced in an intracratonic setting in Archaean Cratons, are reported from many parts of the world. Such high-Mg low-Ti siliceous rocks are emplaced during Neoarchaean-Paleoproterozoic. The Archaean central Indian Bastar Craton also contains such a boninite-norite suite, which occurs in the form of dykes and volcanics. The spatial and temporal correlation of these high-Mg low-Ti siliceous rocks with similar rocks occurring around the northern Bastar and Dharwar Cratons probably represent a Bastar-Dharwar Large Igneous Province during the Neoarchaean-Paleoproterozoic. Platinum group element (PGE) abundances in these rocks provide constraints on their geochemical evolution during the Neoarchaean-Paleoproterozoic. The PGE geochemistry of the boninite-norite suite from the southern part of the central Indian Bastar Craton is presented to understand their behaviour during magma fractionation. In primitive mantle-normalized plots all samples have similar PGE fractionated patterns that are enriched in Pd, Pt and Rh relative to Ru. The Pd/Ru ratios for eight samples range from 2.0 to 7.0 which is higher than primitive mantle (primitive mantle Pd/Ru ≈1.2). The Pd/Pt ratios range between 0.2–2.5 with an average value of 0.7 which is near chondritic (primitive mantle Pd/Pt ≈0.5). PGE variations in these rocks together with those of major and other trace elements are consistent with a model involving olivine fractionation along with chromite as a cotectic phase. The Pt fractionation from Pd and Rh is controlled by both olivine and chromite crystallization at an early stage during high temperature crystal fractionation when the Pt was strongly compatible and Pd and Rh were incompatible. Strong negative correlations of the S content with iron and TiO2 plus lithophile element contents of the rock suggest a decrease of the S solubility in the parental high-Mg magma and separation of an immiscible sulfide liquid with decreasing temperature. Palladium plus other available chalcophile elements (e.g., Re, Au, Ag) have been fractionated in this immiscible sulfide liquid after considerable olivine fractionation of the magma.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号