首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of “excess” CO2 in the formation of trona deposits
Authors:Sam Earman  Fred M Phillips  Brian JOL McPherson
Institution:Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
Abstract:The prevailing theory for the formation of trona Na3(CO3)(HCO3) · 2(H2O)] relies on evaporative concentration of water produced by silicate hydrolysis of volcanic rock or volcaniclastic sediments. Given the abundance of closed drainage basins dominated by volcanics, it is puzzling that there are so few trona deposits and present-day lakes that would yield dominantly Na–CO3 minerals upon evaporation. Groundwater in the San Bernardino Basin (southeastern Arizona, USA and northeastern Sonora, Mexico) would yield mainly Na–CO3 minerals upon evaporation, but waters in the surrounding basins would not. Analysis of the chemical evolution of this groundwater shows that the critical difference from the surrounding basins is not lithology, but the injection of magmatic CO2. Many major deposits of trona and Na–CO3-type lakes appear to have had “excess” CO2 input, either from magmatic sources or from the decay of organic matter. It is proposed that, along with the presence of volcanics, addition of “excess” CO2 is an important pre-condition for the formation of trona deposits.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号