首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geology,mineralogy, and geochemistry of low grade Ni-lateritic soil (Oman Mountains,Oman)
Institution:1. Institutes of Geosciences, Friedrich-Schiller University, Burgweg 11, D-07749 Jena, Germany;2. Department of Material Research and Physics, Division Mineralogy, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria;3. Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark;4. Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;1. St. Kl. Ohridski University of Sofia, 15, Tsar Osvoboditel Blvd., 1504 Sofia, Bulgaria;2. Institute of Organic Chemistry, Bulgarian Academy of Sciences, 9 Bldg., Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;3. Geological Institute, Bulgarian Academy of Sciences, 24 Bldg., Acad. Bonchev Str., 1113 Sofia, Bulgaria;1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;2. National Key Laboratory of Science and Technology on Remote Sensing Information and Image Analysis, Beijing Research Institute of Uranium Geology, China National Nuclear Corporation, Beijing 100029, China;1. Geobiotec, LNEG: Geology, Hydrogeology and Coastal Geology Department, Estrada da Portela, Bairro do Zambujal, Ap. 7586-Alfragide, 2610-999 Amadora, Portugal;2. Geobiotec, Department of Earth Sciences, University of Coimbra, 3030-790 Coimbra, Portugal;3. Earth Sciences Department, Memorial University, St. John’s, NL A1B 3X5, Canada;1. Gmain Nr. 1, 84424 Isen, Germany;2. Hydroisotop GmbH, Woelkestrasse 9, 85301 Schweitenkirchen, Germany,;3. UMR GeoRessources 7359, Université de Lorraine. 54506 Vandoeuvre-lès-Nancy Cedex, France;4. Norges Geologiske Undersøkelse, 7491 Trondheim, Norway;5. Natural History Museum, Cromwell Road, London SW7 5 BD, United Kingdom;6. Institut für Mineralogie, TU Bergakademie Freiberg, Brennhausgasse 14, 09596 Freiberg, Germany;7. Secretaria de Mineria, Av. Hipólito Yrigoyen 401, 5000 Córdoba, Argentina;1. University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190 Kinshasa XI, Democratic Republic of the Congo;2. Comité National de Protection contre les Rayonnements Ionisants (CNPRI), B.P. 833 Kinshasa 1, Democratic Republic of the Congo;3. Faculty of Science, Earth and Environmental Science, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland;4. University of Geneva, Institute for Environmental Sciences, EnviroSPACE Lab., Uni Carl-Vogt, 66 Boulevard Carl-Vogt, CH-1205 Genève, Switzerland;5. Global Resource Information Database - Geneva, International Environment House, 11 chemin des Anémones, CH-1219 Châtelaine, Switzerland;6. Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, B.P. 8815 Kinshasa, Democratic Republic of the Congo;7. Université de Kinshasa, Faculté des Lettres et Sciences Humaines, Département des Sciences de l’Information et de la Communication, B.P. 243 Kinshasa XI, Democratic Republic of the Congo
Abstract:The laterite profiles investigated in the present study developed after the emplacement of a slab of oceanic crust and upper mantle sequence (the Semail ophiolite) onto the East Arabian margin during the late Cretaceous. The laterites formed as a result of prolonged weathering of the ophiolite assemblage under tropical to subtropical conditions.Nine laterite profiles have been examined for their Ni potential along a NW-SE segment of the Oman Mountains. The preserved laterite profile shows variations in thickness, mineralogy, and chemical composition. The profiles show a vertical succession from bedrock protolith through saprolite, oxide laterite, to clay laterite. The laterite profiles are unconformably capped either by clastics rocks of the Late Cretaceous Qahlah Formation or by Palaeogene carbonates of the Jafnayn or Abat Formations.The protolith corresponds either to a fine-grained, blackish to greenish serpentinized peridotite or to a coarse-grained dark green altered layered gabbro.The bulk geochemistry of the studied profiles indicates a typical low Ni-laterite pattern in which magnesium (Mg) and silica (Si) become depleted towards the top of the profile, whereas iron (Fe) and aluminum (Al) increase. A significant enrichment in Ni and Co occurred as a result of the laterization process. Ni concentrations average 0.63% (Ibra), 0.72% (East Ibra), 0.67% (Al-Russayl), and 0.33% (Tiwi). Other elements such as Cr, V, Pb, TiO2, Zr, Ba, and Zn were also remobilized across the profiles during the laterization processes.
Keywords:Nickel laterite  Oman Mountains  Ophiolite  Weathering  Soil
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号