首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mafic-ultramafic magmatism of the Early Precambrian (from the Archean to Paleoproterozoic)
Authors:E V Sharkov  M M Bogina
Institution:(1) Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, Russia
Abstract:Compositional evolution of the Archean mafic-ultramafic volcanics is considered in comparison with evolution of the Paleoproterozoic volcanism using available data on the Baltic shield, Pilbara (Australia) and Superior (Canada) cratons, and the Isua greenstone belt (Greenland). The Archean volcanics of mantle origin are of two major types, represented (a) by komatiite-basaltic complexes (komatiites, komatiitic and tholeiitic basalts) and (b) by geochemical analogs of boninites (GAB) and siliceous high-Mg series (SHMS) of volcanic rocks. As is established, the komatiitic and GAB volcanism ceased in the terminal Archean, whereas the SHMS rocks prevailed in the Paleoproterozoic to become extinct about 2 Ga ago in connection with transition to the Phanerozoic type of tectonomagmatic activity. Geochemical trends of mafic-ultramafic associations occurring in the considered cratons are not uniform, being of particular character to certain extent. With transition from the Paleo- to Neoarchean, rock associations of both types reveal a minor increase in Ti and Fe contents. Comparatively high Fe2O3tot TiO2, and P2O5 concentrations (maximal ones in the Archean), which are characteristic of the Neoarchean (2.75–2.70 Ga) basalts from the Superior and Pilbara cratons or the Baltic shield, represent a result of relatively high-Ti intracratonic magmatic activity that commenced in that period practically for the first time in the Earth history. This magmatic activity of the Neoarchean was not as intense as the high-Mg basaltic volcanism, and the absolute maximum in concentrations of the above components was attained only 2.2–1.9 Ga ago, at the time of appearance in abundance of Fe-Ti picrites and basalts typical of the Phanerozoic intraplate magmatism. The Archean volcanic complexes demonstrate gradual secular increase in concentrations of incompatible elements (LREE inclusive) and growth of Nb/Th ratio that apparently reflected the progressing influence of mantle plumes. In the early Paleoproterozoic (2.5–2.35 Ga), values of that ratio considerably declined in the SHMS rocks and then quickly grew in the Middle Paleoproterozoic volcanics (2.2–1.9 Ga) to attain finally the values typical of the Phanerozoic magmas associated in origin with mantle plumes. The ?Nd(T) parameter was decreasing with time from positive values in the Paleoarchean to negative ones in the SHMS rocks of the Paleoproterozoic most likely in response to grown proportion of ancient crustal material in magmatic melts. Since the mid-Paleoproterozoic, the ?Nd(T) values turn in general into positive again reflecting change in the character of magmatic activity: the SHMS melts gave place at that time to the Fe-Ti picrite-basaltic magmas. The primary crust of the Earth was presumably of sialic composition and originated during solidification from the bottom upward of the global magma ocean a few hundreds kilometers deep, when most fusible components migrated up to the surface to form there the granitic crust. Geological history of the Earth commenced at the appearance time of granite-greenstone terranes and granulite belts separating them, the first large tectonic structures formed under influence of raising mantle superplumes.
Keywords:Archean  Paleoproterozoic  granite-greenstone terranes  large igneous provinces  komatiite  tholeiitic basalt  siliceous high-Mg (boninite-like) series  geochemical analogues of boninite  Baltic shield  Superior and Pilbara cratons
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号