首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water-rock interactions and chemical compositional variations during ductile deformation of the NW-striking shear zone in the Jiapigou gold belt,China
Authors:Sun Xiaoming  Xu Keqin  Ren Qijiang  Reid R Keays
Institution:(1) Geology Department of Zhongshan University, 510275 Guangzhou;(2) Department of Earth Sciences, Nanjing University, 210093 Nanjing;(3) Department of Geology, Melbourne University, 3052 Melbourne, Parkville, Victoria, Australia
Abstract:Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and theAn values declined rapidly, finally all of them were transformed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are −3.0‰ – −5.6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (f v≈1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components suchs as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of Au in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along microfractures, and preciptated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245–292°C and 95.4–131.7 MPa respectively; the salinity is 12.88–16.33wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F and Cl, while the gaseous phases are rich in CO2 and CH4. The δD and δ18O, values of the ore-forming fluid are −84.48‰ – −91.73‰ and −0.247‰ – +2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water. This project is financially supported by the National Natural Science Foundation of China (No. 9488010).
Keywords:ductile deformation  water/rock reaction  compositional variation  fluid geochemistry  Jiapigou gold belt
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号