首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The petrogenesis and tectonic implications of the granitoid gneisses from Xingxingxia in the eastern segment of Central Tianshan
Institution:1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;2. Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;1. State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;3. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
Abstract:As part of Central Asian Orogenic Belt (CAOB), the Central Tianshan zone plays a crucial role in the reconstruction of the tectonic evolution of the CAOB. Furthermore, it is bordered by the Tarim Craton to the south, and the comparable evolutionary history between them enables the Central Tianshan zone to provide essential information on the crustal evolution of the Tarim Craton. The eastern segment of the Central Tianshan tectonic zone is characterized by the presence of numerous Precambrian metamorphic rocks, among which the Xingxingxia Group is the most representative one. The granitoids gneisses, intruded into the Xingxingxia Group, consist of two major lithological assemblages: (1) biotite-monzonitic gneisses and (2) biotite-plagioclase gneisses. These metamorphosed granitoid rocks are characterized by enrichment in SiO2, Al2O3 and K2O and depletion in MgO and FeOT. The Rittmann index (σ) spreads between 1.44 and 2.21 and ACNK (Al2O3/(CaO + Na2O + K2O)) ranges from 1.03 to 1.08, indicating that these granitoid gneisses are high-K calc-alkaline and peraluminous. Trace element data indicate that the studied samples are enriched in LREE with moderate REE fractionated patterns ((La/Yb)N = 10.5–75.3). The concentrations of HREE of the garnet-bearing gneisses are significantly higher than those of garnet-free gneisses. The former show pronounced negative Eu anomalies (Eu/Eu* = 0.32–0.57), while the latter are characterized by negligible negative Eu anomalies to moderate positive Eu anomalies (Eu/Eu* = 0.80–1.35). In addition, the enrichment of LILE (Rb, Th, K, Pb) and depletion of HFSE (Ta, Nb, P, Ti) of the examined granitoid gneisses are similar to typical volcanic-arc granites. Zircons U–Pb dating on the biotite monzonitic gneiss yields a weighted mean 206Pb/238U age of 942.4 ± 5.1 Ma, suggesting their protoliths were formed in the early Neoproterozoic, which is compatible with the time of the assembly of supercontinent Rodinia. The zircons have a large εHf(t) variation from −5.6 to +3.2, suggesting that both old crust-derived magmas and mantle-derived juvenile materials contributed to the formation of their protoliths. Based on field observation, and petrological, geochemical and geochronological investigations, we infer that the granitoid gneisses from Xingxingxia were probably formed on a continental arc that resulted from the interaction of Australia and the Tarim Craton during the assembly of the Rodinia supercontinent, and that the Central Tianshan zone was a part of the Tarim Craton during that time. Besides, the Grenvillian orogenic events may have developed better in the Tarim Craton than previously expected.
Keywords:Central Tianshan  Tarim Craton  Grenvillian  Granitoid gneisses  Zircon U–Pb dating and Hf isotopes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号