首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Redox-linked conformation change and electron transfer between monoheme c-type cytochromes and oxides
Authors:Nidhi Khare  Carrick M Eggleston  Michael Swenson
Institution:a Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
b Department of Biological Sciences, Idaho State University, Pocatello, ID 83204, USA
Abstract:Electron transfer between redox active proteins and mineral oxides is important in a variety of natural as well as technological processes, including electron transfer from dissimilatory metal-reducing bacteria to minerals. One of the pathways that could trigger electron transfer between proteins and minerals is redox-linked conformation change. We present electrochemical evidence that mitochondrial cytochrome c (Mcc) undergoes significant conformation change upon interaction with hematite and indium-tin oxide (ITO) surfaces. The apparent adsorption-induced conformation change causes the protein to become more reducing, which makes it able to transfer electrons to the hematite conduction band. Although Mcc is not a protein thought to be involved in interaction with mineral surfaces, it shares (or can be conformed so as to share) some characteristics with multiheme outer-membrane cytochromes thought to be involved in the transfer of electrons from dissimilatory iron-reducing bacteria to ferric minerals during respiration. We present evidence that a 10.1 kDa monohoeme cytochrome isolated and purified from Acidiphilium cryptum, with properties similar to those of Mcc, also undergoes conformation change as a result of interaction with hematite surfaces.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号