首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2
Authors:Kazuya Tanaka  Yukinori Tani  Masaharu Tanimizu  Naofumi Kozai
Institution:a Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
b Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
c Department of Earth and Planetary Systems Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
d Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
Abstract:Sorption of rare earth elements (REEs) and Ce oxidation on natural and synthetic Mn oxides have been investigated by many researchers. Although Mn(II)-oxidizing microorganisms are thought to play an important role in the formation of Mn oxides in most natural environments, Ce oxidation by biogenic Mn oxide and the relevance of microorganisms to the Ce oxidation process have not been well understood. Therefore, in this study, we conducted sorption experiments of REEs on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. The distribution coefficients, Kd(REE), between biogenic Mn oxide (plus hyphae) and 10 mmol/L NaCl solution showed a large positive Ce anomaly and convex tetrad effect variations at pH 3.8, which was consistent with previous works using synthetic Mn oxide. The positive Ce anomaly was caused by oxidation of Ce(III) to Ce(IV) by the biogenic Mn oxide, which was confirmed by analysis of the Ce LIII-edge XANES spectra. With increasing pH, the positive Ce anomaly and convex tetrad effects became less pronounced. Furthermore, negative Ce anomalies were observed at a pH of more than 6.5, suggesting that Ce(IV) was stabilized in the solution (<0.2 μm) phase, although Ce(III) oxidation to Ce(IV) on the biogenic Mn oxide was confirmed by XANES analysis. It was demonstrated that no Ce(III) oxidation occurred during sorption on the hyphae of strain KR21-2 by the Kd(REE) patterns and XANES analysis. The analysis of size exclusion HPLC-ICP-MS showed that some fractions of REEs in the filtrates (<0.2 μm) after sorption experiments were bound to organic molecules (40 and <670 kDa fractions), which were possibly released from hyphae. A line of our data indicates that the negative Ce anomalies under circumneutral pH conditions arose from Ce(III) oxidation on the biogenic Mn oxide and subsequent complexation of Ce(IV) with organic ligands. The suppression of tetrad effects is also explained by the complexation of REEs with organic ligands. The results of this study demonstrate that the coexistence of the biogenic Mn oxide and hyphae of strain KR21-2 produces a specific redox chemistry which cannot be explained by inorganic species.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号