首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selenium speciation and partitioning within Burkholderia cepacia biofilms formed on α-Al2O3 surfaces
Authors:Alexis S Templeton  Thomas P Trainor  Gordon E Brown Jr
Institution:1 Surface and Aqueous Geochemistry Group, Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94035-2115, USA
2 Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60439, USA
3 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
4 Stanford Synchrotron Radiation Laboratory, SLAC, MS 99, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
Abstract:The distribution and speciation of Se within aerobic Burkholderia cepacia biofilms formed on α-Al2O3 (1-102) surfaces have been examined using grazing-angle X-ray spectroscopic techniques. We present quantitative information on the partitioning of 10−6 M to 10−3 M selenate and selenite between the biofilms and underlying alumina surfaces derived from long-period X-ray standing wave (XSW) data. Changes in the Se partitioning behavior over time are correlated with microbially induced reduction of Se(VI) and Se(IV) to Se(0), as observed from X-ray absorption near edge structure (XANES) spectroscopy.Selenite preferentially binds to the alumina surfaces, particularly at low Se], and is increasingly partitioned into the biofilms at higher Se]. When B. cepacia is metabolically active, B. cepacia rapidly reduces a fraction of the SeO32− to red elemental Se(0). In contrast, selenate is preferentially partitioned into the B. cepacia biofilms at all Se] tested due to a lower affinity for binding to the alumina surface. Rapid reduction of SeO42− by B. cepacia to Se(IV) and Se(0) subsequently results in a vertical segregation of Se species at the B. cepacia/α-Al2O3 interface. Elemental Se(0) accumulates within the biofilm with Se(VI), whereas Se(IV) intermediates preferentially sorb to the alumina surface.B. cepacia/α-Al2O3 samples incubated with SeO42− and SeO32− when the bacteria were metabolically active result in a significant reduction in the mobility of Se vs. X-ray treated biofilms. Remobilization experiments show that a large fraction of the insoluble Se(0) produced within the biofilm is retained during exchange with Se-free solutions. In addition, Se(IV) intermediates generated during Se(VI) reduction are preferentially bound to the alumina surface and do not fully desorb. In contrast, Se(VI) is rapidly and extensively remobilized.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号