首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The groundwater geochemistry of the Bengal Basin: Weathering, chemsorption, and trace metal flux to the oceans
Authors:Carolyn B Dowling  Robert J Poreda
Institution:1 Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
Abstract:Sixty-eight groundwater samples from the Ganges-Brahmaputra floodplain in the Bengal Basin were analyzed to assess the groundwater geochemistry, the subsurface hydrology, the buffering effects of sediments on trace metal concentrations and their isotopic compositions, and the magnitude of the subsurface trace element flux to the Bay of Bengal and to the global ocean. Samples obtained from depths of 10 to 350 m were measured for major and trace elements, dissolved gas, and tritium. On the basis of the 3He/3H ages, the groundwater at depth (30-150 m) appears to be continually replenished, indicating that this recharge of groundwater to depth must ultimately be balanced by a significant quantity of submarine discharge into the Bay of Bengal. Using the 3He/3H groundwater age-depth relationship to calculate a recharge rate of 60 ± 20 cm/yr, we estimate a subsurface discharge into the Bay of Bengal of 1.5 ± 0.5 × 1011 m3/yr, or 15% of the surface Ganges-Brahmaputra river (GBR) flux. Several trace elements, especially Sr and Ba, display elevated concentrations averaging 7 to 9 times the surface GBR water values. The submarine groundwater fluxes of Sr and Ba to the oceans are 8.2 ± 2 × 108 and 1.5 ± 0.3 × 108 mol/yr, or 3.3 and 1.2%, respectively, of the world total, or equal to the surface GBR Sr and Ba estimated fluxes. Our groundwater flux for Ba agrees with the estimate of Moore (1997) (3 × 108-3 × 109 mol/yr), on the basis of measured Ba and Ra excesses in the Bay of Bengal. Other trace metals, such as U and Mo, are at low but measurable levels and are not major contributors to the global flux in this river system. A comparison of the Sr and Ba concentrations, plus 87Sr/86Sr ratios in groundwater to the oxalate extractable fractions of a coastal sediment core, suggests that weathering of carbonates and minor silicates, coupled with cation exchange plus adsorption and desorption reactions, controls the trace element concentrations and 87Sr/86Sr isotopic compositions in both the groundwater and river water. Our data also imply that other coastal floodplains (e.g., the Mekong and the Irrawaddy rivers) that have high precipitation rates and rapid accumulation of immature sediments are likely to make significant contributions to the global oceanic trace metal budgets and have an impact on the Sr isotopic evolution in seawater.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号