首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation of the initial steps
Authors:Anand P Chandra
Institution:Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
Abstract:Pyrite is an environmentally significant mineral being the major contributor to acid rock drainage. Synchrotron based SPEM (scanning photoelectron microscopy) and micro-XPS (X-ray photoelectron spectroscopy) have been used to characterise fresh and oxidised pyrite (FeS2) with a view to understanding the initial oxidation steps that take place during natural weathering processes. Localised regions of the pyrite surface containing Fe species of reduced coordination have been found to play a critical role. Such sites not only initiate the oxidation process but also facilitate the formation of highly reactive hydroxyl radical species, which then lead the S oxidation process.Four different S species are found to be present on fresh fractured pyrite surfaces: S22−(bulk) (4-fold coordination), S22−(surface) (3-fold coordination), S2− and S0/Sn2− (metal deficient sulfide and polysulfide respectively). These species were found to be heterogeneously distributed on the fractured pyrite surface. Both O2 and H2O gases are needed for effective oxidation of the pyrite surface. The process is initiated when O2 dissociatively and H2O molecularly adsorb onto the surface Fe sites where high dangling bond densities exist. H2O may then dissociate to produce radical dotOH radicals. The adsorption of these species leads to the formation of Fe-oxy species prior to the formation of sulfoxy species. Evidence suggests that Fe-O bonds form prior to Fe-OH bonds. S oxidation occurs through interactions of radical dotOH radicals formed at the Fe sites, with formation of SO42− occurring via S2O32−/SO32− intermediates. The pyrite oxidation process is electrochemical in nature and was found to occur in patches, where site specific adsorption of O2 and H2O has occurred. Fe and S oxidation was found to occur within the same area of oxidation probably in atomic scale proximity. Furthermore, the O in SO42− arises largely from H2O; however, depending on the surface history, SO42− formed early in the oxidation process may also contain O from O2.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号