首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core
Authors:John T Wasson  Heinz Huber
Institution:

aInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA

Abstract:Group IID is the fifth largest group of iron meteorites and the fourth largest magmatic group (i.e., that formed by fractional crystallization). We report neutron-activation data for 19 (of 21 known) IID irons. These confirm earlier studies showing that the group has a relatively limited range in Ir concentrations, a factor of 5. This limited range is not mainly due to incomplete sampling; Instead, it seems to indicate low solid/liquid distribution coefficients reflecting very low S contents of the parental magma, the same explanation responsible for the limited range in group IVA. Despite this similarity, these two groups have very different volatile patterns. Group IVA has very low abundances of the volatile elements Ga, Sb and Ge whereas in group IID Ga and Sb abundances are the highest known in a magmatic group of iron meteorites and Ge abundances are the second highest (after group IIAB). Group IID appears to be the only large magmatic group having high volatile abundances but low S. In the volatile-depleted groups IVA and IVB it is plausible that S was lost as a volatile from a chondritic precursor material. Because group IID seems to have experienced minimal loss of volatiles, we suggest that S was lost as an early melt having a composition near that of the Fe–FeS eutectic (not, vert, similar315 mg/g S). When temperatures had risen 400–500 K higher P-rich melts formed, became gravitationally unstable, and drained through the first melt to form an inner core that was parental to the IID irons. As discussed by Kracher, A., Wasson, J.T., 1982. The role of S in the evolution of the parental cores of the iron meteorites. Geochim. Cosmochim. Acta 46, 2419–2426], it is plausible that a metal-rich inner core and a S-rich outer core could coexist metastably because stratification near the interface permitted only diffusional mixing. The initial liquidus temperature of the inner, P-rich core is estimated to have been not, vert, similar1740 K; after >60% crystallization the increase in P and the decrease in temperature may have permitted immiscibility with the S-rich outer core. We have not recognized samples of the outer core.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号