首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation
Authors:Bing Shen  Shuhai Xiao  Chuanming Zhou
Institution:a Department of Earth Sciences, Rice University, Houston, TX 77005, USA
b Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
c Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
d Department of Geology, University of Maryland, College Park, MD 20742, USA
e State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Abstract:In order to understand spatial variations of stable isotope geochemistry in the Quruqtagh basin (northwestern China) in the aftermath of an Ediacaran glaciation, we analyzed carbonate carbon isotopes (δ13Ccarb), carbonate oxygen isotopes (δ18Ocarb), carbonate associated sulfate sulfur (δ34SCAS) and oxygen isotopes (δ18OCAS), and pyrite sulfur isotopes (δ34Spy) of a cap dolostone atop the Ediacaran Hankalchough glacial diamictite at four sections. The four studied sections (YKG, MK, H and ZBS) represent an onshore-offshore transect in the Quruqtagh basin. Our data show a strong paleobathymetry-dependent isotopic gradient. From the onshore to offshore sections, δ13Ccarb values decrease from −2‰ to −16‰ (VPDB), whereas δ18Ocarb values increase from −4‰ to −1‰ (VPDB). Both δ34SCAS and δ34Spy show stratigraphic variations in the two onshore sections (MK and YKG), but are more stable in the two offshore sections (H and ZBS). δ18OCAS values of onshore samples are consistent with terrestrial oxidative weathering of pyrite. We propose that following the Hankalchough glaciation seawater in the Quruqtagh basin was characterized by a strong isotopic gradient. The isotopic data may be interpreted using a three-component mixing model that involves three reservoirs: deep-basin water, surface water, and terrestrial weathering input. In this model, the negative δ13Ccarb values in the offshore sections are related to the upwelling of deep-basin water (where anaerobic oxidation of dissolved organic carbon resulted in 13C-depleted DIC), whereas sulfur isotope variations are strongly controlled by surface water sulfate and terrestrial weathering input derived from oxidative weathering of pyrite. The new data provide evidence for the oceanic oxidation following the Hankalchough glaciation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号