首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China
Authors:Hanjie Wen  Jean Carignan
Institution:a State Key Laboratory of Ore Deposit Geochemistry (SKLODG), Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
b Centre de Recherches Petrographique et Geochimiques, CNRS, 15, Rue Notre-Dame-Pauvrves, B.P. 20, 54501, Vandoeuvre-les-Nancy Cedex, France
Abstract:We analyzed the Se isotopic composition of black shales and related kerogen and sulfide fractions from the Zunyi Ni-Mo-Se deposit, the La’erma Se-Au deposit and the Yutangba Se deposit in southern China to constrain metal sources and accumulation processes, both subjects of disagreement in the scientific community. Se at the Zunyi Ni-Mo-Se polymetallic deposit displayed a restricted range of δ82Se values (−1.6‰ to 2.4‰ with a mean of 0.6‰) suggesting a major hydrothermal origin where aqueous Se was probably transported as H2Se, along with H2S, and precipitated directly as selenides or in sulfides. Se at the La’erma Se-Au deposit covers a larger range in δ82Se values (−3.8‰ to 5.4‰ with a mean of 0.3‰), suggesting Se redistribution following redox transformations, leading to kinetic isotopic fractionation. The largest Se isotopic variation so far in natural terrestrial samples was found in the Yutangba Se deposit, with δ82Se values varying from −12.77‰ to 4.93‰. On the basis of variations in Se isotopes in the deposit, along with other geological and geochemical evidence, the “redox model” (supergene alteration) explains the occurrence of native Se in the deposit. Overall, hydrothermal systems may be a potentially important Se source to form economic deposits in comparison to seawater sources. Significantly, our study indicates that either secondary hydrothermal or supergene alteration is a key factor in Se enrichment in black shales. Redistribution of Se, and probably other redox-sensitive metals like Mo, Cr and V, leads to isotopic fractionation which may be used to fingerprint such alteration/precipitation processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号