首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature
Authors:Ronit Kessel  John R Beckett  Edward M Stolper
Institution:Division of Geological and Planetary Sciences, MC 170-25, California Institute of Technology, Pasadena, CA 91125, USA
Abstract:The compositions and textures of phases in eleven equilibrated ordinary chondrites from the H, L, and LL groups spanning petrographic types 4-6 were studied and used to constrain the thermal histories of their parent bodies. Based on Fe-Mg exchange between olivine and spinel, average equilibration temperatures for type 4-6 chondrites encompass a small range, 586-777 °C, relative to what is commonly assumed for peak temperatures (600-950 °C). The maximum temperatures recorded by individual chondrites, which are minima relative to peak metamorphic temperatures, increase subtly but systematically with metamorphic type and are tightly clustered for H4-6 (733-754 °C) and LL4-6 (670-777 °C). For the Ls, Ausson (L5) records a higher maximum olivine-spinel temperature (761 °C) than does the L4 chondrite Saratov (673 °C) or the L6 chondrite Glatton (712 °C). Our data combined with olivine-spinel equilibration temperatures calculated for other equilibrated ordinary chondrites using mineral compositions from the literature demonstrate that, in general, type 4 chondrites within each chemical group record temperatures lower than or equal to those of types 5-6 chondrites.For H chondrites, the olivine-spinel closure temperature is a function of spinel grain size, such that larger grains, abundant in types 5-6 chondrites, record temperatures of ∼740 °C or more while smaller grains, rare in types 5-6 but abundant in type 4 chondrites, record lower temperatures. Olivine-spinel temperatures in the type 6 chondrites Guareña and Glatton are consistent with rapid (50-100 °C/Myr) cooling from high temperatures in the ordinary chondrite parent bodies. With one exception (∼500 °C/Myr), olivine-spinel data for St.-Séverin (LL6) are consistent with similar cooling rates. Cooling rates of order 100 °C/Myr at ∼750 °C for type 6 chondrites are considerably higher than previously determined cooling rates for lower temperatures (?550 °C) based on metallography, fission tracks, and geochronology. For H chondrites, current thermal models of an “onion shell” parent body are inconsistent with a small range of peak temperatures based on olivine-spinel and two pyroxene thermometry combined with a wide dispersion of cooling rates at low temperatures. Equilibrated chondrites may have sampled regions near a major transition in physical properties such as near the base of a regolith pile.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号