首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical behavior during mineralization and alteration events in the Baiyinchang volcanic-hosted massive sulfide deposits,Gansu Province,China
Institution:1. Departamento de Geologia, UFRN, Brazil;2. Kimbell School of Geosciences, Midwestern State University, USA;3. Department of Earth Sciences, University of Geneva, Switzerland;1. College of Earth Sciences, Jilin University, Changchun, Jilin Province 130061, PR China;2. Workday Corporation, Toronto, Ontario M5V3C7, Canada;1. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;2. Department of Earth Sciences, Durham University, Durham DH1 3LE, UK;3. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:The Zheyaoshan deposit is the largest within the Baiyinchang (BYC) volcanic-hosted massive sulfide (VHMS) district, located in the northern Qilian orogenic belt of North China. The deposit is hosted by quartz keratophyre tuffs, with wall-rock alteration mainly comprising chlorite, sericite, quartz, pyrite and epidote. Mineral assemblages within the altered host rocks can be divided into a sericite-quartz-dominant assemblage (sericite-silicified zone), a chlorite-dominant assemblage (chlorite-dominant zone) and a pyrite-dominant assemblage (mineralized zone) based on geochemical analysis and alteration characteristics. We have conducted detailed processing and critical analysis of the geochemical data of both the altered and least-altered host rocks in order to investigate the problem of closure in the geochemical dataset to eliminate the influence that each component has on the other in terms of mass change, and have applied the standardized method of the mass change calculation to analyze this data. The results show that: (1) the sericite-silicified zone formed along fissures due to the ingress of hydrothermal fluids, with MnO2, Na2O and CaO being mobilized into the hydrothermal fluids leached and MgO, Fe2O3, SiO2, K2O, BaO deposited. Additionally, Ag, Cu and chalcophile elements (Ag, As and Bi) were enriched while Pb, Zn and large ion lithophile elements (LILEs) (Cs, Sr, Eu, Be) were mobilized into hydrothermal fluids; (2) the physiochemical conditions and pH levels of the hydrothermal fluids changed during sericitization, with MgO, Fe2O3, BaO being further enriched and MnO, Na2O, CaO further depleted, leading to formation of chlorite and the initial precipitation of metallogenic the (Cu, Zn, Pb) and chalcophile elements (Ag, As, Bi); (3) the negative Eu anomaly was mainly due to its strong activity when Eu is mobilized into the hydrothermal fluids during since plagioclase break-down during the sericite-silicification process; (4) AI and CCPI values gradually increase towards the orebody. The chlorite-dominant assemblage and sericite-quartz-dominant assemblage on the periphery of the chlorite-dominant zone can all be used as vectors towards the volcanic massive sulfide orebody and for regional-scale mineral exploration. Either leached elements or enriched elements can be considered as significant indicator elements and as prospective indicators for geochemical exploration within the BYC district. The Eu anomaly may be especially useful as an indicator for distinguishing the least-altered rocks which has great significance for exploration on the regional scale.
Keywords:VHMS deposit  Material source  Wall rock alteration  Elemental mass change  Baiyinchang  Gansu  Metals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号