首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seismic Imaging from a TBM
Authors:G Swinnen  J W Thorbecke  G G Drijkoningen
Institution:(1) Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
Abstract:Summary Seismic monitoring from the head of a tunnel-boring machine (TBM) enables improved assessment of the risks associated with the tunnel-boring process. The monitoring system provides a live image of ground conditions along the trajectory followed by the TBM and detects local heterogeneities such as boulders, foundations, and other obstacles that commonly pass undetected using local geotechnical techniques. From a seismic perspective, the underground setting of tunnelling projects places limitations on imaging capability. The principal limiting factor is the size of the area upon which transducers can be installed. This limitation requires adjustments to traditional seismic imaging techniques in which a large area is assumed to be available for attaching the transducers. Recently developed short imaging operators take this limitation into account and are used in the examples described herein. The unique conditions of tunnelling yield two advantages over traditional settings in terms of imaging: rotation of the cutter wheel and the lateral progression of the TBM. Rotation of the cutter wheel, upon which the transducers are installed, provides the opportunity to illuminate obstacles from different angles in different recordings. Spatial progression of the TBM enables improvement in the illumination of obstacles and the signal-to-noise ratio by combining recordings from different lateral positions. In this paper, these specific aspects of seismic imaging during tunnelling are discussed via models that represent different cases encountered in actual tunnelling projects. These case studies demonstrate the way in which image quality along the trajectory of the TBM is improved over that in traditional settings. In this way, the risks associated with the tunnelling process can be more accurately assured.
Keywords:: Monitoring  wavefield extrapolation  imaging  tunneling  prediction of ground conditions  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号