首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxidation state of lithospheric mantle along the northeastern margin of the North China Craton: implications for geodynamic processes
Abstract:Quaternary volcanic rocks in the Kuandian (KD), Longgang (LG), Changbaishan (CBS), Wangqing (WQ), and Jilin (JL) volcanic centres in eastern Liaoning and southern Jilin provinces contain mantle xenoliths of spinel-facies lherzolites and minor harzburgites. Among the study sites, the KD, LG, and CBS volcanic fields are located on the northeastern margin of the North China Craton (NCC), whereas the WQ and JL fields lie on the southern margin of the Xing'an–Mongolia Orogenic Belt (XMOB). The (Fo) components of olivine (Ol) and Cr# (=Cr/(Cr + Al)) of spinel, together with trace element abundance of clinopyroxene, suggest that the subcontinental lithospheric mantle (SCLM) in the study area has undergone a low degree (4–6%) of partial melting. The rocks do not show modal metasomatism, but clinopyroxene grains in selected samples show elevated large ion lithophile element compositions, suggesting that the mantle xenoliths underwent minor cryptic metasomatism by exchange with a silicate melt. Two-pyroxene thermometry yielded equilibration temperatures ranging from 740°C to 1210°C. The corresponding oxygen fugacity (fO2) was calculated to range from FMQ –2.64 to +0.39 with an average of –0.59 (n?=?53). The oxidation state is comparable to that of abyssal peridotites and the asthenospheric mantle. We failed to discover differences in equilibration temperatures and oxidation state between lherzolites and harzburgites, suggesting that partial melting did not affect fO2 values. In addition, similar fO2 of non-metasomatized and metasomatized samples suggest that metasomatism in the region did not affect fO2. Our data suggest that the present SCLM beneath the northeastern margin of the NCC and the southern margin of the XMOB are very similar and likely formed from a fertile asthenosphere after delamination of an old lithospheric keel below the NCC in response to the west-dipping subduction of the Pacific oceanic plate since early to middle Mesozoic time.
Keywords:subcontinental lithospheric mantle  mineral chemistry  oxidation state (fO2)  upwelling asthenosphere  North China Craton
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号