首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高密度电法在输电线路塔基基础附近多年冻土探测中的应用北大核心CSCD
引用本文:游艳辉,李党民,单波,田生祥,王新斌,俞祁浩.高密度电法在输电线路塔基基础附近多年冻土探测中的应用北大核心CSCD[J].冰川冻土,2022,44(2):684-692.
作者姓名:游艳辉  李党民  单波  田生祥  王新斌  俞祁浩
作者单位:1.中国科学院 西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000;2.中国电力工程顾问集团 西北电力设计院有限公司,陕西 西安 710075;3.国网青海省电力公司,青海 西宁 810008
基金项目:国家自然科学基金项目(42071095);;冻土工程国家重点实验室自主研究课题(SKLFSE-ZT-202106);
摘    要:多年冻土区输电线路塔基基础附近活动层厚度和地下冰变化与基础稳定性密切相关,塔基施工的热扰动和混凝土基础的热效应使得基础周围冻土易发生退化,不利于基础的稳定。高密度电法是冻土工程环境研究中常用的地球物理方法,其探测结果的可靠性和分辨能力受数据采集方式、目标体地电结构影响。为减小对输电线路塔基附近冻土特征识别的不确定性,通过建立基础周围多年冻土地电模型的正反演模拟,发现活动层处于融化状态时各种装置方式数据采集均能较好地反映活动层厚度的起伏,但由于冻融锋面附近显著的电阻率差异,难以识别多年冻土层内的地下冰空间分布特征。而活动层处于冻结状态时进行探测能显著提高对多年冻土层内的地下冰空间分布特征识别精度,其中偶极-偶极装置可较好地识别高、低含冰量区域的发育位置和形态特征。在青藏直流输电线路塔基基础附近冻土探测中证实了方法的有效性,探测结果揭示了施工过程和基础热效应导致的塔基基础附近的地下冰退化。以上研究表明,通过正反演模拟,根据具体探测目标选择合适的探测时机和数据采集方式,能显著提高高密度电法探测结果的有效性和精度。

关 键 词:多年冻土  塔基基础  高密度电法  活动层厚度  地下冰
收稿时间:2022-02-22
修稿时间:2022-04-12

Application of high density electrical resistivity tomography in investigating the permafrost around tower foundations of power transmission line
Yanhui YOU,Dangmin LI,Bo SHAN,Shengxiang TIAN,Xinbin WANG,Qihao YU.Application of high density electrical resistivity tomography in investigating the permafrost around tower foundations of power transmission line[J].Journal of Glaciology and Geocryology,2022,44(2):684-692.
Authors:Yanhui YOU  Dangmin LI  Bo SHAN  Shengxiang TIAN  Xinbin WANG  Qihao YU
Institution:1.State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;2.Northwest Electric Power Design Institute Co. ,Ltd. of China Power Engineering Consulting Group,Xi’an 710075,China;3.State Grid Qinghai Electric Power Company,Xining 810008,China
Abstract:Stability of foundations supporting power transmission lines in permafrost regions is closely related to the surrounding active layer thickness and ground ice variations. Thermal disturbance during the construction and heat effect of the concrete foundations tend to thaw the surrounding permafrost, endangering stability of the towers. The electrical resistivity tomography (ERT) method is frequently used in engineering and environmental research in permafrost regions. The reliability and limitation of ERT investigation are related to geoelectrical structures and array used for data collection. We reduced the uncertainty by forward and inverse modeling the geoelectrical models, which represent the permafrost around tower foundations. The results show that the active layer thickness can be effectively detected using different types of arrays, but the spatial distribution of ice-rich and ice-poor permafrost is barely identified when the active layer thaws out. The reliability of ground ice identification improves significantly if the ERT data are collected when the active layer is frozen. Under this condition, the dipole-dipole array shows a better ability to explore configurations of ice-poor and ice-rich permafrost. Effectiveness of the method was verified for tower foundations investigation in permafrost regions along Qinghai-Tibet Power Transmission Line. Degradation of ground ice due to the construction disturbance and heat effects of the concrete foundations were effectively identified. The results indicate that forward and inverse modelling can provide essential insights in designing experiment and collecting data. In this way, the reliability and resolution of ERT in investigating the permafrost characteristics can be significantly improved.
Keywords:permafrost  tower foundations  high density electrical resistivity tomography  active layer thickness  ground ice  
本文献已被 维普 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号