首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of principal stress rotation on wave-induced soil response in a poro-elastoplastic sandy seabed
Authors:Zhu  J-F  Zhao  H-Y  Jeng  D-S
Institution:1.Faculty of Architectural Civil Engineering and Environment, Ningbo University, Ningbo, 315211, China
;2.College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, 2100, China
;3.Griffith School of Engineering, Griffith University Gold Coast Campus, Southport, Queensland, 4222, Australia
;
Abstract:

In this study, a constitutive model is developed in order to investigate wave–seabed interactions. This model takes into account the impact of principal stress rotation (PSR) and is based on the generalized plasticity theory, in which plastic strain generated by PSR is considered an additional item in the constitutive relationship of soil. The normalized loading direction and plastic flow direction were determined based on the stress tensor invariant. Comparisons between the present model and previous Hollow Cylinder Apparatus tests and geotechnical centrifugal wave tests show good agreement. Numerical results show the effects of PSR on predictions of liquefaction potential due to: (a) the cumulative impact of plastic strain in the seafloor and (b) the buildup of pore pressure. Parametric study shows that the model parameters, including the wave and seabed parameters, have significant effects on the wave-induced soil liquefaction.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号