首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of river bank erosion and protection works in a reach of Chenab River,Pakistan
Authors:Muhammad Ashraf  Abdul Sattar Shakir
Institution:1.Centre of Excellence in Water Resources Engineering (CEWRE),University of Engineering & Technology,Lahore,Pakistan;2.Civil Engineering Department,University of Engineering & Technology,Lahore,Pakistan
Abstract:The impacts of floods on river bank erosion are generally significant in the alluvial river reaches. This paper presents the prediction of the river bank erosion along the right bank in the reach of Chenab River (starting from downstream of Marala Barrage) where excessive erosion had been reported. The bank erosion is predicted due to flow/flood events of 2010 by coupling the output from the two-dimensional numerical model to the excess shear stress approach. The predicted bank erosion was compared with the one estimated from Landsat images. The Landsat ETM+ images were processed in the ArcGIS software to assess the external bank erosion. The results show that the excess shear stress approach underpredicts the bank erosion. Therefore, the erodibility coefficient was modified by forcing the best agreement between predicted and estimated (i.e., from Landsat images) bank erosion which was used for further analysis. The results reveal that coupling the output from the numerical model to the excess shear stress approach (by modifying the erodibility coefficient) predicts the river bank erosion with a reasonable level of accuracy, thus helpful to identify the locations for the protection works. The predicted river bank erosion presents good coefficient of determination (R2) of 0.82 when compared with the estimated bank erosion from Landsat images. The findings of the present study will help to implement the river protection works at the identified locations in the selected reach of River Chenab and will also act as a guideline for similar river reaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号