首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amelioration of soil acidity,Olsen-P,and phosphatase activity by manure- and peat-derived biochars in different acidic soils
Authors:Muhammad Aqeel Kamran  Jun Jiang  Jiu-yu Li  Ren-yong Shi  Khalid Mehmood  M Abdulaha-Al Baquy  Ren-kou Xu
Institution:1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,Chinese Academy of Sciences,Nanjing,China;2.College of Resources and Environment,University of Chinese Academy of Sciences,Beijing,China
Abstract:To increase soil productivity, ameliorate nutrient scarcity, and reduce metal toxicity in highly weathered acidic soils usually requires fertilizer and lime application. Effects of three biochars on soil acidity, Olsen-phosphorus (P), phosphatase activities, and heavy metal availability were investigated to test potential of these biochars as soil amendments in highly weathered acidic soils. Incubation experiments were conducted for 6 weeks with three acidic soils: Alfisol, Ultisol, and Oxisol. Three biochars were derived from chicken manure (CMB), pig manure (PMB), and peat moss (PB) at 400 °C and applied at 1 or 2% (wt/wt). The addition of the three biochars increased Olsen-P in the three acidic soils in the following order: CMB?>?PMB?>?PB. Application of 2% CMB increased Olsen-P contents by 2.41-, 7.4-, and 1.78-fold in the Ultisol, Oxisol, and Alfisol compared with controls, respectively. Moreover, CMB increased the soil pH, electrical conductivity (EC), cation exchange capacity (CEC), and alkaline phosphatase activity, but reduced exchangeable acidity, acid phosphatase activity, and the availability of heavy metals—more effectively than PMB and PB. Addition of CMB increased soil pH by 0.90, 0.90, and 0.92 units for the Alfisol, Ultisol, and Oxisol, respectively, correspondingly followed by 0.80, 0.84, and 0.87 units for PMB and 0.15, 0.28, and 0.25 for PM. Changes in EC, CEC, and exchangeable acidity followed the same order for the three soils: CMB?>?PMB?>?PB. The results suggested that the magnitude of changes in soil properties and Olsen-P contents depended on biochar type and application rate. Application of CMB increased nutrient availability and reduced the availability of heavy metals more than other amendments. Due to higher pH, EC, and CEC, and greater concentrations of carbon, nitrogen, and exchangeable calcium and potassium, incorporation of CMB should be a better cost-effective method to correct soil acidity and improve fertility and Olsen-P contents in Ultisols and Oxisols from tropical and subtropical regions of the world.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号