首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection,Greece
Authors:Paraskevas Tsangaratos  Ioanna Ilia
Institution:1.School of Mining and Metallurgical Engineering, Department of Geological Studies,National Technical University of Athens,Zografou,Greece
Abstract:The objective of this study was to validate the outcomes of a modified decision tree classifier by comparing the produced landslide susceptibility map and the actual landslide occurrence, in an area of intensive landslide manifestation, in Xanthi Perfection, Greece. The values that concerned eight landslide conditioning factors for 163 landslides and 163 non-landslide locations were extracted by using advanced spatial GIS functions. Lithological units, elevation, slope angle, slope aspect, distance from tectonic features, distance from hydrographic network, distance from geological boundaries and distance from road network were among the eight landslide conditioning factors that were included in the landslide database used in the training phase. In the present study, landslide and non-landslide locations were randomly divided into two subsets: 80 % of the data (260 instances) were used for training and 20 % of the data (66 instances) for validating the developed classifier. The outcome of the decision tree classifier was a set of rules that expressed the relationship between landslide conditioning factors and the actual landslide occurrence. The landslide susceptibility belief values were obtained by applying a statistical method, the certainty factor method, and by measuring the belief in each rule that the decision tree classifier produced, transforming the discrete type of result into a continuous value that enabled the generation of a landslide susceptibility belief map. In total, four landslide susceptibility maps were produced using the certainty factor method, the Iterative Dichotomizer version 3 algorithm, the J48 algorithm and the modified Iterative Dichotomizer version 3 model in order to evaluate the performance of the developed classifier. The validation results showed that area under the ROC curves for the models varied from 0.7936 to 0.8397 for success rate curve and 0.7766 to 0.8035 for prediction rate curves, respectively. The success rate and prediction curves showed that the modified Iterative Dichotomizer version 3 model had a slightly higher performance with 0.8397 and 0.8035, respectively. From the outcomes of the study, it was induced that the developed modified decision tree classifier could be efficiently used for landslide susceptibility analysis and in general might be used for classification and estimation purposes in spatial predictive models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号