首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combining advanced NMR techniques with ultrahigh resolution mass spectrometry: A new strategy for molecular scale characterization of macromolecular components of soil and sedimentary organic matter
Authors:Junyan Zhong  Rachel L SleighterElodie Salmon  Georgina A McKeePatrick G Hatcher
Institution:a College of Sciences Major Instrumentation Cluster, Old Dominion University, Norfolk, VA 23529, United States
b Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, United States
Abstract:Molecular level characterization of complex biopolymers in nature is a key element to understanding the composition of natural organic matter (NOM) and fossil organic matter formation, such as kerogen and coal. Characterization of such geopolymers is difficult due to their heterogeneity and insolubility in common aqueous or organic solvents. Here, a strategy for extracting a representative sample is presented using the combined techniques of nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for chemical analysis and characterization of NOM. A variety of NOM samples (wood, kerogen, bitumen, whole sediments) are shown as examples for implementing the strategy, which include solvent extractions using pyridine. For most samples, the extracts are confirmed to be chemically representative of the insoluble solid, by comparing the liquids NMR spectrum of the extract to that of the whole, unfractionated NOM utilizing high resolution magic angle spinning (HRMAS) NMR. To assist in unambiguous peak assignment, a technique for post acquisition spectral denoising, using wavelet transformation (WT), is also employed on the 1D and 2D NMR spectra. The findings from the NMR data lay a foundation for the subsequent electrospray ionization FTICR-MS analysis of the pyridine extracts, since this instrument has the limitation of only analyzing liquid samples. The FTICR-MS analyses can, therefore, be used to molecularly represent the structural components of the NOM. Various compositional insights have been obtained on these samples, indicating the efficacy of the analytical techniques used.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号