首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry,detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane
Institution:1. State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;3. Department of Geological Sciences, University College London, London WC1E 6BT, United Kingdom;4. Department of Earth and Environmental Sciences, Università di Milano-Bicocca, 20126 Milano, Italy;1. State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;2. Department of Earth and Environmental Sciences, Università di Milano-Bicocca, Milano 20126, Italy
Abstract:In order to reconstruct tectonic evolution history of the southern margin of Asia (i.e., Lhasa terrane) before the India-Asia collision, here we present a comprehensive study on the clastic rocks in the southern Lhasa terrane with new perspectives from sedimentary geochemistry, detrital zircon geochronology and Hf isotope. Clasts from the Jurassic-Early Cretaceous sedimentary sequences (i.e., Yeba and Chumulong Formations) display high compositional maturity and experienced moderate to high degree of chemical weathering, whereas those from the late Early-Late Cretaceous sequences (Ngamring and Shexing Formations) are characterized by low compositional maturity with insignificant chemical weathering. Our results lead to a coherent scenario for the evolution history of the Lhasa terrane. During the Early-Middle Jurassic (∼192-168Ma), the Lhasa terrane was speculated to be an isolated geological block. The Yeba Formation is best understood as being deposited in a back-arc basin induced by northward subduction of the Neo-Tethys ocean with sediments coming from the interiors of the Lhasa terrane. The Middle Jurassic-Early Cretaceous Lhasa-Qiangtang collision resulted in the formation of a composite foreland basin with southward-flowing rivers carrying clastic materials from the uplifted northern Lhasa and/or Qiangtang terranes. During the late Early-Late Cretaceous (∼104-72Ma), the Gangdese magmatic arc was uplifted rapidly above the sea level, forming turbidites (Ngamring Formation) in the Xigaze forearc basin and fluvial red beds (Shexing Formation) on the retro-arc side. At the end of Late Cretaceous, the Lhasa terrane was likely to have been uplifted to high elevation forming an Andean-type margin resembling the modern South America before the India-Asia collision.
Keywords:Geochemistry  Detrital zircon geochronology  Hf isotope  Lhasa terrane  Southern tibet
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号