首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First report of coupled Early Permian paleomagnetic and geochronologic data from the Dunhuang block (NW China), and implications for the tectonic evolution of the Paleo-Asian ocean
Institution:1. School of Earth Science and Resources, Chang''an University, Xi''an 710054, China;2. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi''an Geological Survey Center, China Geological Survey, Xi''an 710054, China;3. Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Land and Resources, Institute of Geomechanics, CAGS, Beijing 100081, China;4. Deakin University, Geelong, Australia, School of Life and Environmental Sciences, 221 Burwood Highway, Burwood, Victoria 3125, Australia;1. Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada;2. Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;3. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:In order to better understand the tectonic relationship between the Dunhuang block (DHB) and its adjacent blocks, and to constrain the timing of the closure of the Paleo-Asian ocean, a combined geochronologic and paleomagnetic investigation has been undertaken on Early Permian tuff, basalt flows and sandstones from the Shuangbaotang Formation in the northwestern part of the DHB. U-Pb zircon dating indicates that the age of the strata is between 280.6 ± 2.9 Ma and 291.4 ± 2.6 Ma. Thermal demagnetization of a three-component isothermal remanent magnetization (IRM), and Curie point experiment suggest that magnetite dominates in the rock samples analyzed. In addition, there is a minor amount of hematite in some sandstones. Stepwise thermal demagnetization successfully isolated stable characteristic remanent magnetization (ChRM) from 11 tuff layers, two lava flows and nine sandstone beds. Two components were isolated from all samples: a lower temperature component (LTC) and a higher temperature component (HTC). The LTC is near the direction of the present-day geomagnetic field and produced a negative fold test, indicating it is a viscous remanent magnetization in the present-day geomagnetic field. Most of the HTC are reverse polarity (Normal = 4, reverse = 158), which is in accordance with the Kiaman Reversed Superchron that spans the Late Carboniferous-Permian interval. In addition, the HTC of all studied sites passed the fold and reverse tests, suggesting that they likely represent primary remanent magnetization. The tilt-corrected mean direction from all sites (tuff, basalts and sandstones) is Ds = 1.7°, Is = 43.1°, ks = 403, α95 = 1.5°, N = 22. The mean paleopole of the site-mean direction-corresponded VGPs lies at 74.5°N, 268.5°E with A95 = 1.6°. Considering the consistent inclination values recorded among the studied tuff, basalts and sandstones, and the low degrees of anisotropy within all samples, we suggest that there is no significant inclination shallowing caused by depositional compaction in the sedimentary layers of the studied section. Taking into account the results from this study as well as previous Late Paleozoic paleomagentic studies from adjacent tectonic blocks, we conclude that the DHB formed part of the amalgamated Dunhuang-North China-Alxa-Qaidam mega-block during the Early Permian, but was separated from the Tarim block by a small ocean (here named the Qiemo-Xingxingxia paleo-ocean) at this time. A comparison of the Early Permian paleolatitudes of these and other adjacent blocks suggest that the Paleo-Asian ocean (sensu lato) was still open at this time. Combined with other geological evidence, a paleogeographic reconstruction of the Paleo-Asian ocean has been reconstructed for the Early Permian.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号