首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite and eclogite from Shuanghe, Dabie Mountains, China
Authors:L WANG  Z M JIN  T KUSKY  H J XU  XW LIU
Institution:Three Gorges Geohazards Research Center, Ministry of Education, China University of Geosciences, Wuhan 430074, China ();
State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;
Department of Marine Geology, Ocean University of China, Qingdao 266100, China;
Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Abstract:Quantitative analysis of the structural evolution of jadeite‐quartzite, a rare ultra‐high pressure (UHP) rock type from the Dabie Mountains of eastern China, sheds light on the formation and evolution of UHP orogenic belts worldwide. Geological mapping of the Shuanghe area, where jadeite‐quartzites crop out, was carried out to determine the spatial relationships between different UHP rocks within this orogen. The deformation mechanisms of jadeite‐quartzite, geodynamical parameters (stress, strain, strain rate), and microstructure including lattice preferred orientation (LPO) were determined from six jadeite‐quartzite samples from the Shuanghe area. LPOs of clinopyroxene (jadeite and omphacite), garnet, rutile and quartz from these jadeite‐quartzite samples are compared with those of three eclogites preserving different degrees of deformation from the Shuanghe area. Microstructural LPOs of jadeite, omphacite, garnet, rutile and quartz were determined using electron backscattered diffraction (EBSD) analysis. Quartz fabrics were largely recrystallized during late, low‐grade stages of deformation, whereas garnet shows no strong LPO patterns. Rutile fabrics show a weak LS fabric along 001]. Jadeite and omphacite show the strongest eclogite facies LPO patterns, suggesting that they may provide important information about mantle deformation patterns and control the rheology of deeply subducted continental crust. Microstructural data show that the jadeite LPO patterns are similar to those of omphacite and vary between L‐ and S‐types, which correlate with prolate and oblate grain shape fabrics (SPO); quartz LPOs are monoclinic. Microstructural analysis using TEM shows that the dominant slip systems of jadeite in one sample are (100)001], (110)001] and (1 1 0)1/2110], while in another sample, no dislocations are observed. Abundant dislocations in quartz were accommodated by the dominant slip system (0001)11inline image0], indicating basal glide and represents regional shearing during the exhumation process. This suggests that dislocation creep is the dominant fundamental deformation mechanism in jadeite under UHP conditions. The protoliths of jadeite‐quartzite, metasedimentary rocks from the northern passive continental margin of the Yangtze craton, experienced the same deep subduction and were deformed under similar rheological conditions as other UHP eclogite, marble and paragneiss. Experimental UHP deformation of quartzo‐feldspathic gneiss with a chemical composition similar to the bulk continental crust has shown that the formation of a jadeite–stishovite rock is associated with a density increase of the host rock similar to the eclogite conversion from basaltic protoliths. The resulting rock can be denser than the surrounding mantle pyrolite up to depths of 660 km (24 GPa). Thus, processes of deep continental subduction may be better‐understood through understanding the rheology and mechanical behaviour of jadeite. Jadeite‐quartzites such as those from the Shuanghe may be exhumed remnants of deeply‐subducted slabs of continental crust, other parts of which subducted past the ‘depth of no return’, and remain in the deep mantle.
Keywords:fabric  Jadeite-quartzite  omphacite  rheology  UHP
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号