首页 | 本学科首页   官方微博 | 高级检索  
     检索      

矿物光电子能量在地球早期生命起源与进化中的作用
引用本文:鲁安怀,李艳,黎晏彰,丁竑瑞,王长秋.矿物光电子能量在地球早期生命起源与进化中的作用[J].地质论评,2023,69(1):234-246.
作者姓名:鲁安怀  李艳  黎晏彰  丁竑瑞  王长秋
作者单位:北京大学地球与空间科学学院,矿物环境功能北京市重点实验室,北京,100871
基金项目:本文为国家自然科学基金重点资助项目(编号:41820104003和42192502)的成果
摘    要:地球早期生命起源的第一步是合成简单的有机化合物,但合成有机物所需能量来源问题长期困扰着学术界。早期地球上丰富的硫化物半导体矿物可将太阳光子转化为光电子,提供持续的能量来源。也正是由于矿物光电子能量较高,在非生物途径合成小分子有机物方面具有优势。其中半导体矿物自然硫转化太阳能产生的光电子能量,是目前所发现的最高的矿物光电子能量,不仅能直接还原CO2分子为甲酸物质,还可催化其他生命基础物质的合成。在全球陆地系统中暴露在阳光下的岩石/土壤表面普遍被一层铁锰氧化物“矿物膜”所覆盖,光照下含半导体矿物水钠锰矿的“矿物膜”产生原位、灵敏、长效的光电流,显示出优异的光电效应。生物光合作用中心Mn4CaO5在裂解水产氧过程中产生成分和结构类似水钠锰矿的结构中间体,地球早期“矿物膜”中水钠锰矿可能促进了锰簇Mn4CaO5与生物光合作用的起源与进化。早期地球半导体矿物为生命起源基本物质的合成提供直接能量来源,矿物光电子能量在地球早期生命起源与进化中起到了重要作用。

关 键 词:地表“矿物膜”  半导体矿物  矿物光电子能量  生命起源基本物质合成  锰簇与光合作用起源
收稿时间:2022/6/9 0:00:00
修稿时间:2022/9/10 0:00:00

The role of mineral photoelectron energy in the origin and evolution of early life on the Earth
LU Anhuai,LI Yan,LI Yanzhang,DING Hongrui,WANG Changqiu.The role of mineral photoelectron energy in the origin and evolution of early life on the Earth[J].Geological Review,2023,69(1):234-246.
Authors:LU Anhuai  LI Yan  LI Yanzhang  DING Hongrui  WANG Changqiu
Institution:Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871
Abstract:The first step in the origin of early life on the Earth was the synthesis of simple organic compounds, but the energy source required for the synthesis of organic compounds has long plagued the academic community. By introducing the photoelectric effect of semiconductor minerals widely existing on the Earth''s surface, this paper focuses on the micro mechanism of the reduction of carbon dioxide to organic compounds by mineral photoelectron energy, and puts forward that the semiconductor minerals on the early Earth provide a new direct energy source for the synthesis of basic organic substances of the pre- life origin, so as to explain the important role of mineral photoelectron energy in the origin and evolution of early life on the Earth. Results & Conclusions: The abundant sulfide semiconductor minerals on the early Earth can convert solar photons into photoelectrons and can provide a sustainable energy source. It is precisely because of the high photoelectron energy of minerals that they have advantages in the non biological synthesis of small molecular organics. The photoelectron energy generated by the conversion of natural sulfur of semiconductor minerals into solar energy is the highest photoelectron energy of minerals found so far. It can not only directly reduce CO2 molecules to formic acid, but also catalyze the synthesis of other basic life substances. In the global terrestrial system, the rock / soil surface exposed to sunlight is generally covered by a layer of "mineral membrane" made of Fe- and Mn (oxyhydr)oxide. Under light, the "mineral membrane" of birnessite produces in- situ, sensitive and long- term photocurrent, showing excellent photoelectric effect. The biological photosynthesis center Mn4CaO5 produces structural intermediates with composition and structure similar to birnessite in the process of cracked aquatic oxygen. Birnessite in the "mineral membrane" of the early Earth may have promoted the origin and evolution of the cluster of Mn4CaO5 and even the biological photosynthesis. The semiconductor minerals from early Earth provided direct energy source for the synthesis of basic materials of the origin of life. Mineral photoelectron energy played an important role in the origin and evolution of early Earth life.
Keywords:mineral membrane  semiconductor minerals  photoelectron energy of minerals  synthesis of basic substances of the origin of life  origin of Mn4CaO5 and photosynthesis
点击此处可从《地质论评》浏览原始摘要信息
点击此处可从《地质论评》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号