首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics
Authors:T Vegas-Vilarrúbia  V Rull  E Montoya  E Safont
Institution:1. School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;2. School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
Abstract:Palaeoecology, as an ecological discipline, is able to provide relevant inputs for conservation science and ecosystem management, especially for issues involving long-term processes, such as ecological succession, migration, adaptation, microevolution, and extinction. This use of palaeoecology has been noted for several decades, and it has become widely accepted, especially in the frame of ongoing and near-future global warming and its potential biotic consequences. Selected palaeoecological insights of interest for conservation include the following: 1) species respond in an individualistic manner to environmental changes that lead to changes in community composition, suggesting that future ecosystems would have no modern analogues; 2) in the short-term, acclimation is more likely a response of species that are expected to persist in the face of global warming, but the possibility of evolutionary change linked to the existence of pre-adapted genomes cannot be dismissed; 3) species unable to acclimate or adapt to new conditions should migrate or become extinct, which has been observed in past records; 4) current extinction estimates for the near-future should be revised in light of palaeoecological information, which shows that spatial reorganisations and persistence in suitable microrefugia have been more common than extinction during the Quaternary; 5) biotic responses to environmental changes do not necessarily follow the rules of equilibrium dynamics but depend on complex and non-linear processes that lead to unexpected “surprises”, which are favoured by the occurrence of thresholds and amplifying positive feedbacks; 6) threshold responses can cause the movement of ecosystems among several potentially stable states depending on their resilience, or the persistence of transient states; 7) species and their communities have responded to environmental changes in a heterogeneous fashion according to the local and regional features, which is crucial for present and future management policies; 8) the global warming that occurred at the end of the Younger Drays cold reversal (ca 13.0 to 11.5 cal kyr BP) took place at similar rates and magnitudes compared to the global warming projected for the 21st century, thus becoming a powerful past analogue for prediction modelling; 9) environmental changes have acted upon ecosystems in an indirect way by modifying human behaviour and activities that, in turn, have had the potential of changing the environment and enhancing the disturbance effects by synergistic processes involving positive feedbacks; 10) the collapse of past civilisations under climate stress has been chiefly the result of inadequate management procedures and weaknesses in social organisation, which would be a warning for the present uncontrolled growth of human population, the consequent overexploitation of natural resources, and the continuous increase of greenhouse gas emissions; 11) the impact of fire as a decisive ecological agent has increased since the rise of humans, especially during the last millennia, but anthropic fires were not dominant over natural fires until the 19th century; 12) fire has been an essential element in the development and ecological dynamics of many ecosystems, and it has significantly affected the worldwide biome distribution; 13) climate–fire–human synergies that amplify the effects of climate, or fire alone, have been important in the shaping of modern landscapes. These general paleoecological observations and others that have emerged from case studies of particular problems can improve the preservation of biodiversity and ecosystem functions. Nature conservation requires the full consideration of palaeoecological knowledge in an ecological context, along with the synergistic cooperation of palaeoecologists with neoecologists, anthropologists, and conservation scientists.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号