首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal sources of the large Nezhdaninsky orogenic gold deposit, Yakutia, Russia: Results of high-precision MC-ICP-MS analysis of lead isotopic composition supplemented by data on strontium isotopes
Authors:I V Chernyshev  N S Bortnikov  A V Chugaev  G N Gamyanin  A G Bakharev
Institution:1. Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Staromonetnyi per. 35, Moscow, 119017, Russia
2. Institute of Diamond and Noble-Metal Geology, Siberian Branch, Russian Academy of Sciences, pr. Lenina 39, Yakutsk, 677007, Russia
Abstract:A collection of galena from the Nezhdaninsky gold deposit (62 samples), as well as galena from the Menkeche silver-base-metal deposit and the Sentyabr occurrence and K-feldspar from intrusive rocks of the Tyry-Dyby ore cluster have been studied using the high-precision (±0.02%) MC-ICP-MS method. Particular ore zones are characterized by relatively narrow variations of isotope ratios (no wider than σ6/4 = 0.26%). Vertical zoning of Pb isotopic composition is not detected. Variation in Pb isotope ratios mainly depends on the type of mineral assemblage. Galena of the gold-sulfide assemblage dominating at the Nezhdaninsky deposit is characterized by the following average isotope ratios: 206Pb/204Pb = 18.472, 207Pb/204Pb = 15.586, and 208Pb/204Pb = 38.605. Galena from the regenerated silver-base-metal assemblage is distinguished by less radiogenic lead isotope ratios: 18.420, 15.575, and 38.518, respectively. In lead from the Nezhdaninsky deposit, the component, whose source is identified as Permian host terrigenous rocks, is predominant. The data points of isotopic composition of lode lead make up a linear trend within the range of μ2 = 9.5-9.6. K-feldspar of granitic rocks has less radiogenic and widely varying lead isotopic composition compared to that of galena. The isotopic data on Pb and Sr constrain the contribution of Late Cretaceous granitic rocks as a source of gold mineralization at the Nezhdaninsky deposit. The matter from the Early Cretaceous fluid-generating magma chamber participated in the ore-forming system of the Nezhdaninsky deposit. The existence of such a chamber is confirmed by the occurrence of Early Cretaceous granitoid intrusions on the flanks of the Nezhdaninsky ore field. The greatest contribution of magmatic lead (~30%) is noted in galena from the silver-base-metal mineral assemblage. This component has isotopic marks characteristic of lower crustal lead: the elevated 208Pb/206Pb ratio relative to the mean crustal value and the lower 207Pb/204Pb ratio. Taken together, they determine a high Th/U ~ 4.0 in the source and μ2 = 9.37–9.50. This conclusion is consistent with the contemporary tectonic model describing evolution of the South Verkhoyansk sector of the Verkhoyansk Foldbelt and the Okhotsk Terrane.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号