首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbonatite melt inclusions in coexisting magnetite,apatite and monticellite in Kerimasi calciocarbonatite,Tanzania: melt evolution and petrogenesis
Authors:Tibor Guzmics  Roger H Mitchell  Csaba Szabó  Márta Berkesi  Ralf Milke  Rainer Abart
Institution:1.Lithosphere Fluid Research Laboratory,E?tv?s University Budapest,Budapest,Hungary;2.Lakehead University,Thunder Bay,Canada;3.Free University,Berlin,Germany;4.Department für Lithosph?renforschung,Universit?t Wien,Wien,Austria
Abstract:Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号