首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In situ Sr isotopic analyses of epidote: tracing the sources of multi-stage fluids in ultrahigh-pressure eclogite (Ganghe,Dabie terrane)
Authors:Email author" target="_blank">Shun?GuoEmail author  Kai?Ye  Yueheng?Yang  Yi?Chen  Lingmin?Zhang  Jingbo?Liu  Qian?Mao  Yuguang?Ma
Institution:1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing,China
Abstract:This study presents in situ strontium (Sr) isotope and Sr content data on multi-stage epidote crystals from ultrahigh-pressure (UHP) eclogites and omphacite–epidote veins therein at Ganghe (Dabie terrane, China), determined using LA-MC-ICP-MS. The Ganghe eclogites occur as lenses in mainly leucocratic UHP gneisses, and therefore, our data provide insights into the origin, composition, and transport scale of the discrete multi-stage fluids in UHP eclogites during the subduction and exhumation of a continental crust. Four textural types of epidote that record compositional and isotopic signatures of fluid at various metamorphic PT conditions have been distinguished based on petrographic observations and compositional analyses. They are (1) fine-grained high-pressure (HP) epidote inclusions (Ep-In) in omphacite that define the earliest stage of epidote formation in the eclogite; (2) coarse-grained UHP epidote porphyroblasts (Ep-P) that contain omphacite with Ep-In inclusions in the eclogite; (3) fine-grained HP epidote in omphacite–epidote veins (Ep-V) as well as (4) the latest-stage epidote in disseminated amphibolite-facies veinlets (Ep-A), which crosscut the Ep-P or matrix minerals in the eclogite and HP vein. Both Ep-P and Ep-V crystals exhibit significant and complex chemical zonations with respect to the XFe (= Fe/(Fe + Al)) ratio and Sr content. In contrast to the varying Sr contents, Ep-In, Ep-P, and Ep-V have similar and narrow ranges of initial 87Sr/86Sr ratios (from 0.70692 to 0.70720 for Ep-In, from 0.70698 to 0.70721 for Ep-P, and from 0.70668 to 0.70723 for Ep-V), which are significantly different from those in Ep-A (from 0.70894 to 0.71172). The initial 87Sr/86Sr ratio of Ep-A is closer in value to the initial Sr isotopic composition of the gneisses (from 0.710790 to 0.712069) which enclose the UHP eclogite. These data indicate different sources of the eclogite-facies fluids and retrograde amphibolite-facies fluid in the Ganghe eclogites. The HP–UHP fluids responsible for the large amounts of hydrous minerals in the eclogites were internally derived and buffered. The omphacite–epidote veins were precipitated from the channelized solute-rich HP–UHP fluids released from the host eclogite. However, hydrated amphibolite-facies metamorphism during exhumation was mainly initiated by the low-Sr and high-87Sr/86Sr external fluid, which infiltrated into the eclogite from the surrounding gneisses. The eclogite-facies fluids in the Ganghe eclogites were locally derived, whereas the infiltration of the retrograde amphibolite-facies fluid from the gneisses required a long transport, most likely longer than 80 m. This study highlights that the in situ Sr isotopic analysis of multi-stage epidote can be employed as a powerful geochemical tracer to provide key information regarding the origin and behavior of various-stage subduction-zone metamorphic fluids.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号