首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lead contents of S-type granites and their petrogenetic significance
Authors:Fritz Finger  David Schiller
Institution:1. Department of Materials Engineering and Physics, University of Salzburg, Salzburg, Austria
Abstract:An evaluation of Pb and Ba contents in S-type granites can provide important information on the processes of crustal partial melting. Primary low-T S-type granites, which form mainly by fluid-absent muscovite melting, may acquire a significant enrichment in Pb when compared to higher-T S-type granites for a given Ba content. We consider the following factors are responsible for this enrichment: Muscovite is a major carrier of Pb in amphibolite facies metapelites, and thus large quantities of Pb can be liberated upon its breakdown. The typical restite assemblage of Qz?+?Bt?+?Sil?±?Pl?±?Grt?±?Kfsp that forms during low-T, fluid-absent muscovite melting can take up only minor amounts of this Pb. This is because the crystal/melt Pb distribution coefficients for these restite minerals are low to very low. Only K-feldspar is moderately compatible for Pb, with a crystal/melt distribution coefficient of ~3, but its modal content in restites is usually low. At the same time, the restite assemblage will retain much Ba owing to the very high Ba uptake in both biotite and K-feldspar, which is an order of magnitude higher than for Pb. Thus, during a low-T anatectic event involving a low degree of crustal melting, Pb (as an incompatible element) can become strongly enriched in the partial melt relative to Ba and also relative to source rock values. In the case of higher-T anatexis and larger partial melt amounts, the Pb becomes less enriched and the Ba less depleted or even enriched relative to source rock values. During fractional crystallization of a S-type granite magma, Ba behaves strongly compatibly and Pb weakly compatibly. The concentrations of both elements decrease along the liquid line of decent. Owing to this sympathetic fractionation behavior, the primary, source-related Pb–Ba fingerprint (with weak or strong Pb enrichment) remains in evolved S-type granites. This facilitates a distinction between primary low-T S-type granites, which are related to muscovite melting, and secondary low-T S-type granites that evolve through fractional crystallization from a higher-T parental magma. We show in this paper that a simple logarithmic Pb versus Ba diagram can be a valuable aid for interpreting the petrogenesis of S-type granite suites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号