首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession,N. W. Scotland
Authors:Andrew C Kerr  Pamela D Kempton  Robert N Thompson
Institution:(1) Department of Geological Sciences, University of Durham, South Rd, DH1 3LE Durham, UK;(2) NERC Isotope Geosciences Laboratory, c/o British Geological Survey, NG12 5GG Keyworth, UK;(3) Present address: Department of Geology, University of Leicester, University Road, LE1 7RH Leicester, UK
Abstract:Assimilation of crustal rocks with concomitant fractional crystallisation (AFC) is a well documented phenomenon in many igneous suites, but geochemical evidence from the Tertiary Mull lava succession suggests that in these magmas crustal contamination occurred by a distinctly different mechanism. Lavas from the lower half of the Mull Plateau group (MPG) can be divided into two broad sub-types; high (>8%) MgO basalts with elevated Ba and K; and lower MgO (<8%) basaltic-hawaiites with lower Ba and K. The lower crust and most of the upper crust beneath Mull is probably of Lewisian age. The Sr-, Nd-and Pb-isotope compositions of local Lewisian crustal samples yield the following ranges: 87Sr/86Sr=0.71002–0.72348, 143Nd/144Nd=0.51045–0.51058 and 206Pb/204Pb=14.0–14.6. Ten lavas have also been analysed and yield the following ranges: 87Sr/86Sr=0.7028–0.7042, 143Nd/144Nd=0.51214–0.51230 and 206Pb/204Pb=15.1–17.9. However, within this range, it is predominantly the more primitive mafic compositions, with elevated Mg, Ba and K, that show the lowest Nd- and Pb-, and the highest Sr-isotope values. Modelling of these isotopic results, in conjunction with major and trace element data, show that: (1) contamination by Lewisian lower crustal material does occur; (2) that the process involved was not one of assimilation with concomitant fractional crystallisation (AFC). The proposed contamination process is one whereby the hottest (most MgO rich) magmas have assimilated acidic partial melts of Lewisian lower crust during turbulent ascent (ATA) through thin, poorly connected dyke- and sill-like magma chambers. The chemical composition of the contaminated lavas can be modelled successfully through addition of sim5% acidic Lewisian crust to an uncontaminated lava. In contrast, the more evolved magmas — which probably fractionated at sub-crustal levels — were either not hot enough to molt significant amounts of crust, or did not ascend turbulently because of their higher viscosity, and so are less contaminated with crust.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号