首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study of the interaction of mineral-forming hydrothermal solutions with oil and their joint migration
Authors:V S Balitsky  V Yu Prokof’ev  L V Balitskaya  T M Bublikova  S V Pentelei
Institution:(1) Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia;(2) Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Staromonetnyi per. 35, Moscow, 119017, Russia;(3) 361, chemin du Bouyssier, 342 Claret, France
Abstract:Interaction between oil and hydrothermal solutions of different compositions was experimentally studied in a wide range of temperature (260–490°C) and pressures (8–150 MPa). This study was based on a new technique involving simultaneous occurrence of water-hydrocarbon interaction and growth of quartz, calcite, and fluorite crystals with fluid inclusions from the same solution. Fluid inclusions were studied to characterize the behavior of oil and aqueous solutions at elevated and high temperatures and pressures. It was shown that, owing to interaction with hydrothermal solutions, oil is intensely removed from the source rock and accumulated in the frontal part of hydrothermal convective flow. During this process, the oil is partially transformed into hydrocarbons, light oil, semiliquid and solid bitumens. At temperatures of 300–350°C and pressures of 50–100 MPa, oil and its fractionation products migrate in hydrothermal solution mainly in a drop-liquid state. At higher temperatures (360–395°C), when the oil/water ratio in the initial mixture is no higher than 1/70–1/35, liquid and gaseous hydrocarbons are completely dissolved in hydrothermal solutions forming a complex homogenous water-hydrocarbon fluid. The fluid can exist and migrate in this state, but it becomes heterogeneous with decreasing P-T parameters. Under favourable structural and lithological conditions, this can lead to the formation of displaced oil-and-gas deposits, with oil enriched in light components. The experiments unambiguously confirmed the concept that bitumen inclusions in minerals can serve as indicators of hydrocarbon migration paths in the Earth’s crust.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号