首页 | 本学科首页   官方微博 | 高级检索  
     检索      

镁铁—超镁铁质岩浆中铂族元素的富集机理:综述与实例
引用本文:王焰,魏博,陈晨,白玉颖.镁铁—超镁铁质岩浆中铂族元素的富集机理:综述与实例[J].地质学报,2023,97(11):3622-3636.
作者姓名:王焰  魏博  陈晨  白玉颖
作者单位:1) 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东广州,510640;2) 广东省矿物物理与材料研究开发重点实验室,广东广州,510640
基金项目:本文为国家自然科学基金重大研究计划重点项目(编号 91962217)和广东省科技计划项目(编号 2023B1212060048)联合资助的成果
摘    要:目前陆地上可利用的铂族元素(PGE)资源主要来自与镁铁—超镁铁质岩浆密切相关的岩浆硫化物矿床。岩浆硫化物矿床成矿理论关注的一个重要问题就是镁铁—超镁铁质岩浆中PGE的富集机理。经典成矿理论认为,由于PGE在平衡的硫化物熔体与硅酸盐熔体之间具有极高的分配系数(105~106),PGE富集成矿主要与成矿体系中硅酸盐熔体与硫化物熔体的质量比有关(R-factor)。但是近些年来,许多新的实验岩石学结果和天然矿石样品纳米尺度PGE赋存状态的观测结果对这一经典理论提出了挑战。本文列举了一些相关的研究实例,显示硅酸盐熔体中的PGE纳米颗粒可以被硫化物或铬铁矿机械捕获、并通过定向附着生长、聚集、粗化和融合,最终形成纳米颗粒集合体和纳米合金。另外,岩浆中半金属元素(TABS,即Te、As、Bi、Sb、Sn)和Se可以与PGE优先形成各种互化物,从而富集于砷化物、铋化物、碲化物或硒化物中,而非硫化物中。因此,镁铁—超镁铁质岩浆体系中PGE的富集可能不仅受其在硫化物熔体中极高的分配系数控制,一些物理过程导致的PGE分配以及半金属元素对PGE的富集作用也不容忽视。由于矿石中的铂族矿物一般为纳—微米级,采用聚...

关 键 词:镁铁—超镁铁质岩浆  铂族元素(PGE)  分配系数  半金属元素(TABS)和Se  PGE纳米颗粒聚集方式
收稿时间:2023/3/4 0:00:00
修稿时间:2023/6/27 0:00:00

Enrichment mechanism of platinum- group elements in mafic- ultramafic magmas: Review and case studies
WANG Yan,WEI Bo,CHEN Chen,BAI Yuying.Enrichment mechanism of platinum- group elements in mafic- ultramafic magmas: Review and case studies[J].Acta Geologica Sinica,2023,97(11):3622-3636.
Authors:WANG Yan  WEI Bo  CHEN Chen  BAI Yuying
Institution:1) Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; 2) Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou, Guangdong 510640, China
Abstract:Platinum- group elements (PGE) mineralization is mainly hosted in magmatic sulfide deposits associated with mafic- ultramafic magmas. The mechanism of PGE enrichment in magmatic systems is an important issue of the genesis of magmatic sulfide deposits. In classical theory, the high PGE tenors in the sulfides are attributed to the extremely high sulfide- silicate partition coefficient (105~106) and the mass of silicate melt with which a given mass of sulfide melt has been equilibrated (R- factor). However, this conventional model has been challenged by recent experimental and empirical results of PGE occurrences in micro- to nano- scale. Here, we briefly introduce some case studies showing that PGE nanoparticles can be physically trapped in sulfide and/or chromite and then form PGE nanoalloy by oriented attachment and flocculation of many coexisting nanoparticles. On the other hand, PGE (e.g., Pt and Pd) incline to combine with semimetal elements (TABS: Te, As, Bi, Sb and Sn) and Se, forming PGE- rich arsenides, bismuthides, tellurides or stannides. Therefore, besides thermodynamically partitioning of PGE between sulfide and silicate melts, the assemblage and coalescence of PGE nanoparticles and the existence of TABS may play important roles in the collection of PGE in sulfides. As platinum- group minerals are commonly micrometer/nanometer- sized, the detailed investigation of PGE occurrences in variable mineral phases using advanced micro- scale analytical techniques such as FIB, HRTEM, nano- SIMS and APT will help for a better understanding of the PGE enrichment mechanism, and may provide some new insights for the metallogenic theory of magmatic sulfide deposits.
Keywords:mafic- ultramafic magmas  platinum- group elements (PGE)  partition coefficient  Te  As  Bi  Sb and Sn (TABS) and Se  aggregation of PGE nanoparticles
点击此处可从《地质学报》浏览原始摘要信息
点击此处可从《地质学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号