首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogeological and geophysical study for deeper groundwater resource in quartzitic hard rock ridge region from 2D resistivity data
Authors:DEWASHISH KUMAR  V ANANDA RAO  V S SARMA
Institution:1. CSIR–National Geophysical Research Institute, Hyderabad, 500 007, India
Abstract:Electrical resistivity method is a versatile and economical technique for groundwater prospecting in different geological settings due to wide spectrum of resistivity compared to other geophysical parameters. Exploration and exploitation of groundwater, a vital and precious resource, is a challenging task in hard rock, which exhibits inherent heterogeneity. In the present study, two-dimensional Electrical Resistivity Tomography (2D-ERT) technique using two different arrays, viz., pole–dipole and pole–pole, were deployed to look into high signal strength data in a tectonically disturbed hard rock ridge region for groundwater. Four selected sites were investigated. 2D subsurface resistivity tomography data were collected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological interpretation based on resistivity models reveal the water horizons trap within the clayey sand and weathered/fractured quartzite formations. Aquifer resistivity lies between ~3–35 and 100–200 Ωm. The results of the resistivity models decipher potential aquifer lying between 40 and 88 m depth, nevertheless, it corroborates with the static water level measurements in the area of study. The advantage of using pole–pole in conjunction with the pole–dipole array is well appreciated and proved worth which gives clear insight of the aquifer extent, variability and their dimension from shallow to deeper strata from the hydrogeological perspective in the present geological context.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号